Differences between revisions 27 and 34 (spanning 7 versions)
Revision 27 as of 2009-03-27 22:50:36
Size: 2966
Editor: TobiasLang
Comment:
Revision 34 as of 2009-03-30 22:16:49
Size: 3031
Editor: TobiasLang
Comment:
Deletions are marked like this. Additions are marked like this.
Line 11: Line 11:

{{attachment:bn.png|Bayesian Planning|width=200}}
Line 38: Line 40:
gute Mathematikkenntnisse; Statistikkenntnisse sind nützlich aber nicht zwingend erforderlich. gute Mathematikkenntnisse; Statistikkenntnisse sind nützlich, aber nicht zwingend erforderlich.
Line 49: Line 51:
 || 19.05. || Beliefpropagierung in zyklischen Graphen, Mean-Field Alg. ||  || 19.05. || Beliefpropagierung in zyklischen Graphen (Loopy BP), Mean-Field Alg. ||
Line 54: Line 56:
 || 16.06. || Strukturierte Support-Vektor-Maschinen (SSVMs) ||
Line 55: Line 58:
 || 16.06. || Strukturierte Support-Vector Maschinen (SSVMs) ||

Describe Main/SS09_GraphicalModels here.

Vorlesung "Einführung in Graphische Modelle"

Bayesian Planning

Inhalt

Graphische Modelle definieren Warscheinlichkeitsfunktionen auf gerichteten/ungerichteten Graphen und erlauben somit die explizite Modellierung von Variablen (=Knoten) und Korrelationen zwischen Variablen (=Kanten).

Zusammen mit einer mächtigen Inferenzmaschinerie (z.B. Viterbi Algorithmus, Junction Tree Algorithmus) erlauben graphische Modelle die direkte Modellierung von natürlich auftretenden Problemstellungen. Sie werden beispielsweise in der Handlungsplanung von Robotern und der maschinellen Sprach- und Bildverarbeitung erfolgreich eingesetzt. Desweiteren basieren viele aktuelle Verfahren des maschinellen Lernens wie z.B. Hidden Markov Models (HMM), Conditional Random Fields (CRFs) oder Structured Support Vector Machines (SSVM) auf graphischen Modellen.

Die Vorlesung stellt graphische Modelle anhand von praktischen Beispielen aus den genannten Gebieten (Robotik, Sprach- und Bildverarbeitung) vor. Thematisch beginnen wir mit einfachen Bayesschen Netzwerken, lernen dann verschiedene Inferenzmechanismen kennen und leiten schliesslich aktuelle Lernverfahren wie HMMs, CRFs und SSVMs her. Am Ende sollen die Teilnehmer in der Lage sein, beliebige Problemstellungen mit Hilfe von graphischen Modellen zu kodieren und zu lösen.

Voraussetzungen

gute Mathematikkenntnisse; Statistikkenntnisse sind nützlich, aber nicht zwingend erforderlich.

Termine

  • Datum

    Beschreibung

    21.04.

    Einführung mit Überblick

    28.04.

    Diskrete Wahrscheinlichkeitsverteilungen, Bedingte und Gesamtwahrscheinlichkeiten, Graphische Modelle, Faktorgraphen

    05.05.

    Inferenz, Eliminierungsalgorithmus, Evidenzen

    12.05.

    Summen-Produkt-Algorithmus, Junction Tree Alg. (JTA)

    19.05.

    Beliefpropagierung in zyklischen Graphen (Loopy BP), Mean-Field Alg.

    26.05.

    Hidden Markov Models (HMMs), Forward-Backward Alg., Viterbi, Expectation-Maximization (EM)

    02.06.

    Bedingte Wahrscheinlichkeiten, (Kernel-) Conditional Random Fields (k-CRFs), Features, Optimierung

    09.06.

    Optimierung (Fortsetzung), Strukturiertes Perzeptron

    16.06.

    Strukturierte Support-Vektor-Maschinen (SSVMs)

    23.06.

    Influence Diagramme

    30.06.

    Markov Decision Processes (MDPs)

    07.07.

    Inferenz für Planen, Optimale Handlungsanweisungen (Policies)

    14.07.

    Zusammenfassung und Fragestunde

IDA Wiki: Main/SS09_GraphicalModels (last edited 2009-07-22 10:46:20 by MarcToussaint)