Size: 1518
Comment:
|
Size: 3263
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
||<(^|2> '''Vorlesung:''' || Dienstag 14.00-16.00 || | ||<(^|2> '''Vorlesung:''' || Dienstag 14.00-16.00 ||<^|6> {{attachment:bn.png|Bayesian Planning|width=190}} || |
Line 11: | Line 11: |
=== Inhalt === Graphische Modelle definieren Warscheinlichkeitsfunktionen auf gekoppelten Variablen. Die gerichtete oder ungerichtete Graphstruktur erlaubt somit eine sehr flexible Modellierung von Variablen (=Knoten) und Anhängigkeiten zwischen Variablen (=Kanten). In den letzten Jahren wurden eine Reihe sehr mächtiger Inferenzalgorithmen (z.B. Viterbi Algorithmus, Junction Tree Algorithmus) entwickelt, die es uns erlauben graphische Modelle direkt für die Modellierung von natürlich auftretender Problemstellungen zu nutzen. Sie werden beispielsweise in der Handlungsplanung von Robotern und der maschinellen Sprach- und Bildverarbeitung erfolgreich eingesetzt. Desweiteren basieren viele aktuelle Verfahren des maschinellen Lernens wie z.B. Hidden Markov Models (HMM), Conditional Random Fields (CRFs) oder Structured Support Vector Machines (SSVM) auf graphischen Modellen. Die Vorlesung führt in die Grundlagen Graphischer Modelle ein und stellt sie anhand von praktischen Beispielen aus den genannten Gebieten (Robotik, Sprach- und Bildverarbeitung) vor. Thematisch beginnen wir mit einfachen Bayesschen Netzwerken, lernen dann verschiedene Inferenzmechanismen kennen und leiten schliesslich aktuelle Lernverfahren wie HMMs, CRFs und SSVMs her. Am Ende sollen die Teilnehmer in der Lage sein, beliebige Problemstellungen mit Hilfe von graphischen Modellen zu kodieren und zu lösen. === Voraussetzungen === gute Mathematikkenntnisse; Statistikkenntnisse sind nützlich, aber nicht zwingend erforderlich. |
|
Line 13: | Line 46: |
|| '''Datum''' || '''Beschreibung''' || || 21.04. || Einführung mit Überblick || |
|| '''Datum''' || '''Beschreibung''' || Vorlesung || Übung || || 21.04. || Einführung mit Überblick || [[attachment:01.pdf|vl01]] || [[attachment:ex1.pdf|ex1]] || |
Line 16: | Line 49: |
|| 28.04. || Diskrete Wahrscheinlichkeitsverteilungen, Graphische Modelle, Faktorgraphen, Bedingte und Gesamtwahrscheinlichkeiten || | || 28.04. || Diskrete Wahrscheinlichkeitsverteilungen, Bedingte und Gesamtwahrscheinlichkeiten, Graphische Modelle, Faktorgraphen || |
Line 18: | Line 51: |
|| 12.05. || Summen-Produkt-Algorithmus, Junction Tree Alg. || || 19.05. || Beliefpropagierung in zyklischen Graphen, Mean-Field Alg. || |
|| 12.05. || Summen-Produkt-Algorithmus, Junction Tree Alg. (JTA) || || 19.05. || Beliefpropagierung in zyklischen Graphen (Loopy BP), Mean-Field Alg. || |
Line 21: | Line 54: |
|| 26.05. || Hidden Markov Models, Forward-Backward Alg., Viterbi, Expectation-Maximization (EM) || || 02.06. || Bedingte Wahrscheinlichkeiten, (Kernel-) Conditional Random Fields (CRFs), Features, Optimierung || |
|| 26.05. || Hidden Markov Models (HMMs), Forward-Backward Alg., Viterbi, Expectation-Maximization (EM) || || 02.06. || Bedingte Wahrscheinlichkeiten, (Kernel-) Conditional Random Fields (k-CRFs), Features, Optimierung || |
Line 24: | Line 57: |
|| 16.06. || Strukturierte Support-Vektor-Maschinen (SSVMs) || | |
Line 25: | Line 59: |
|| 16.06. || Strukturierte Support-Vector Maschinen || | |
Line 27: | Line 60: |
|| 30.06. || Markov Decision Processes || | || 30.06. || Markov Decision Processes (MDPs) || |
Line 30: | Line 63: |
|| 14.07. || Zusammenfassungen und Fragestunde || | || 14.07. || Zusammenfassung und Fragestunde || |
Describe Main/SS09_GraphicalModels here.
Vorlesung "Einführung in Graphische Modelle"
Vorlesung:
Dienstag 14.00-16.00
FR-6535
Übung:
Dienstag 16.00-18.00
FR-4061
Dozenten:
Tobias Lang (Übung)
Inhalt
Graphische Modelle definieren Warscheinlichkeitsfunktionen auf gekoppelten Variablen. Die gerichtete oder ungerichtete Graphstruktur erlaubt somit eine sehr flexible Modellierung von Variablen (=Knoten) und Anhängigkeiten zwischen Variablen (=Kanten).
In den letzten Jahren wurden eine Reihe sehr mächtiger Inferenzalgorithmen (z.B. Viterbi Algorithmus, Junction Tree Algorithmus) entwickelt, die es uns erlauben graphische Modelle direkt für die Modellierung von natürlich auftretender Problemstellungen zu nutzen. Sie werden beispielsweise in der Handlungsplanung von Robotern und der maschinellen Sprach- und Bildverarbeitung erfolgreich eingesetzt. Desweiteren basieren viele aktuelle Verfahren des maschinellen Lernens wie z.B. Hidden Markov Models (HMM), Conditional Random Fields (CRFs) oder Structured Support Vector Machines (SSVM) auf graphischen Modellen.
Die Vorlesung führt in die Grundlagen Graphischer Modelle ein und stellt sie anhand von praktischen Beispielen aus den genannten Gebieten (Robotik, Sprach- und Bildverarbeitung) vor. Thematisch beginnen wir mit einfachen Bayesschen Netzwerken, lernen dann verschiedene Inferenzmechanismen kennen und leiten schliesslich aktuelle Lernverfahren wie HMMs, CRFs und SSVMs her. Am Ende sollen die Teilnehmer in der Lage sein, beliebige Problemstellungen mit Hilfe von graphischen Modellen zu kodieren und zu lösen.
Voraussetzungen
gute Mathematikkenntnisse; Statistikkenntnisse sind nützlich, aber nicht zwingend erforderlich.
Termine
Datum
Beschreibung
Vorlesung
Übung
21.04.
Einführung mit Überblick
28.04.
Diskrete Wahrscheinlichkeitsverteilungen, Bedingte und Gesamtwahrscheinlichkeiten, Graphische Modelle, Faktorgraphen
05.05.
Inferenz, Eliminierungsalgorithmus, Evidenzen
12.05.
Summen-Produkt-Algorithmus, Junction Tree Alg. (JTA)
19.05.
Beliefpropagierung in zyklischen Graphen (Loopy BP), Mean-Field Alg.
26.05.
Hidden Markov Models (HMMs), Forward-Backward Alg., Viterbi, Expectation-Maximization (EM)
02.06.
Bedingte Wahrscheinlichkeiten, (Kernel-) Conditional Random Fields (k-CRFs), Features, Optimierung
09.06.
Optimierung (Fortsetzung), Strukturiertes Perzeptron
16.06.
Strukturierte Support-Vektor-Maschinen (SSVMs)
23.06.
Influence Diagramme
30.06.
Markov Decision Processes (MDPs)
07.07.
Inferenz für Planen, Optimale Handlungsanweisungen (Policies)
14.07.
Zusammenfassung und Fragestunde