Lecture Graphical Models

https://ml01.zrz.tu-berlin.de/wiki/Main/SS09_GraphicalModels
Machine Learning Group, TU Berlin
Instructors: Dr. Ulf Brefeld, Dr. Marc Toussaint
Tutor: Tobias Lang, lang@cs.tu-berlin.de

Sheet 3

Due: 12 May 2009

Exercises 1-3 contain programming tasks. Please send your programs to lang@cs.tu-berlin.de and bring some printouts of your results to the tutorial so that you can explain your observations.

1. Hidden Markov Model inference (1/3)

We have $T+1$ (latent) random variables $X_{0}, . ., X_{T}$ with domain $\{0, . ., K-1\}$, and $T+1$ (observed) random variables $Y_{0}, . ., Y_{T}$ with domain $\{0, . ., K-1\}$. (To start with, choose $T=100$ and $K=256$.) We have the Bayesian Network

$$
\begin{equation*}
P\left(X_{0}, . ., X_{T}, Y_{0}, . ., Y_{T}\right)=P\left(X_{0}\right)\left[\prod_{t=1}^{T} P\left(X_{t} \mid X_{t-1}\right)\right]\left[\prod_{t=0}^{T} P\left(Y_{t} \mid X_{t}\right)\right] \tag{1}
\end{equation*}
$$

a) Draw this Bayes Net graphically.

We make the following specific assumptions about the CPTs:

$$
\begin{align*}
P\left(X_{0}=i\right) & =1 / K \tag{2}\\
P\left(X_{t}=i \mid X_{t-1}=j\right) & =A_{i j}
\end{align*} \quad \text { with } \quad A_{i j} \propto \exp \left(\frac{-|i-j|^{2}}{2 w^{2}}\right), ~ \begin{array}{lll}
& \text { with } & B_{i j} \propto \begin{cases}1 & \text { if } i=j \\
\epsilon & \text { if } i \neq j\end{cases} \tag{3}
\end{array}
$$

Note that \propto means that each column needs to be normalized.
b) Write a routine that computes these matrices for parameters w and ϵ. Test your program with $w=10$ and $\epsilon=0.01$.

2. Hidden Markov Model inference (2/3)

Implement the forward-backward inference algorithm in the HMM of the last exercise.
Assume that we observed only $Y_{0}=0$ and $Y_{T}=K-1$.

Compute the posterior marginal $P\left(X_{t}\right)$ for each t. To do this, first realize that $Y_{1}, . ., Y_{T-1}$ can be eliminated and

$$
\begin{equation*}
P\left(x_{0}, . ., x_{T} \mid y_{0}, y_{T}\right) \propto 1 / K\left[\prod_{t=1}^{T} A_{x_{t}, x_{t-1}}\right] B_{y_{0}, x_{0}} B_{y_{T}, x_{T}} \tag{5}
\end{equation*}
$$

This is a pairwise factor graph over variables $X_{0}, . ., X_{T}$. (In other words, before implementing things, realize that we do not need to actually represent the Y 's in the code because they are either observed (induce a factor over x_{t}) or are eliminated.) Since this is a pair-wise factor graph, use the special case BP equations for pair-wise factor graphs. Note that, to resolve the resursive definition of messages, you need to compute forward messages $\mu_{x_{t}, x_{t-1}}$ iterating forward $t=1, . ., T$, and compute backward messages $\mu_{x_{t-1}, x_{t}}$ iterating backward $t=T, . ., 1$.
Implementation: No fancy things! Write a single simple C or Java routine! Allocate a block of $T \times K$ double memory for the fwd messages, and a block of $T \times K$ double memory for the bwd messages; compute them; compute the posterior beliefs and output them in an ascii file with $(T+1) \times K$ numbers. Use gnuplot splot 'filename' matrix to plot this posterior. That's it.

3. Hidden Markov Model inference (3/3)

Assume we also observe $Y_{\frac{T}{2}}=0$. How does this change our belief about the X_{t}, i.e., the marginals $P\left(X_{t}\right)$?

What happens if we choose very small w and ϵ ?

4. Bonus geek question (unmarked): Relation to Gaussian Processes

Explain how the above HMM is related to a Gaussian process with a Matérn kernel.

5. Elimination ordering

Take a look at the ASIA network (see slide 3 of lecture 2). Represent this Bayesian network as a factor graph.
We are interested in the probability $P(A \mid D)$ and want to infer it by means of the elimination algorithm. What is a good elimination ordering for the variables? Justify your choice.

