Lecture Graphical Models

https://ml01.zrz.tu-berlin.de/wiki/Main/SS09_GraphicalModels
Machine Learning Group, TU Berlin
Instructors: Dr. Ulf Brefeld, Dr. Marc Toussaint
Tutor: Tobias Lang, lang@cs.tu-berlin.de

Sheet 10

Due: 7 July 2009

[Hints: Take the slide 12 in lecture 10 as basis for all three exercises.]

1. Consider the model $P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid X)$ with discrete random variables X, Y, Z. We are given a complete data set $\left\{\left(x_{i}, y_{i}, z_{i}\right)\right\}_{i=1}^{N}$. Prove that the maximum likelihood parameters (that maximize the complete data log-likelihood) of the model are

$$
\begin{equation*}
\pi_{x} \leftarrow \frac{c_{x}}{N}, \quad a_{y x} \leftarrow \frac{c_{y x}}{N c_{x}}, \quad b_{z x} \leftarrow \frac{c_{z x}}{N c_{x}} \tag{1}
\end{equation*}
$$

where parameterization is $P(X=x) \equiv \pi_{x}, P(Y=y \mid X=x) \equiv a_{y x}, P(Z=z \mid X=$ $x) \equiv b_{z x}$ and the counts are defined as

$$
\begin{align*}
& c_{x}=\sum_{i=1}^{N}\left[x_{i}=x\right] \tag{2}\\
& c_{y x}=\sum_{i=1}^{N}\left[y_{i}=y\right]\left[x_{i}=x\right] \tag{3}\\
& c_{z x}=\sum_{i=1}^{N}\left[z_{i}=z\right]\left[x_{i}=x\right] \tag{4}
\end{align*}
$$

[Hints: Take the function $L(\theta)$ in slide 12 as starting point. Take derivatives w.r.t. to parameters $\theta=(\boldsymbol{\pi}, \boldsymbol{a}, \boldsymbol{b})$, set them to zero with Lagrange multipliers ensuring the normalization of the parameter tables.]
2. Assume that X, Y, and Z are binary variables. Consider the same model, but X is unobserved. That is we have some data $\left\{\left(y_{i}, z_{i}\right)\right\}_{i=1}^{N}$. To simplify the notation, we define the counts

$$
d_{y z}=\frac{1}{N} \sum_{i=1}^{N}\left[y_{i}=y\right]\left[z_{i}=z\right]
$$

Derive the E-step and M-step of Expectation Maximization to learn the parameters of the model in terms of these counts. (In the M-step, parameter maximize the expected data log-likelihood.)
[Hints: The E-step is straight-forward. For the M-step, take the function $Q\left(\theta, \theta^{\text {old }}\right)$ as starting point, express it in terms of the $\theta, \theta^{\text {old }}$ and δ_{*}, take the derivative w.r.t. θ as above.]
3. Consider the same model. Analytically marginalize X to formulate the model $P(Y, Z ; \theta)$ and thereby the observed data \log-likelihood $\log P(Y, Z ; \theta)$. Derive equations for the optimal parameters, that maximize this observed data log-likelihood.
[Hints: Take the function $\hat{L}(\theta)$ as starting point. Express it only in terms of parameters θ and relative counts d_{*}. Take derivatives as before.]

