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Information

• inference in graphical models is about information processing...

• what is information?
– Shannon Entropy

H(X) = −
∑
X

P (X) logP (X)

– information↔ neg entropy, (non-uniform) probability distribution

• we use probability distribution as an information calculus
(Bayesian vs. frequentist (description of repeatable experiments) view
on probabilities)
David MacKay: Information Theory, Inference, and Learning Algorithms, Cambridge University Press,
2003

• Graphical models
= joint probability distribution over multiple variables
→ allow information processing between multiple variables
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Core operations on information

1. summing/marginalizing
– marginalizes a joint distribution P (X) =

∑
Y P (X,Y )

– “eliminate Y ” “subsume information on Y ” “resolve coupling to Y ”

2. product
– fusing (independent) information
– Bayes rule P (X|Y ) ∝ P (Y |X)P (X), posterior ∝ likelihood · prior
– Naive Bayes

X

Y1 Y2 Y3 Yn

P (X|Y1:n) ∝ P (X)
∏n
i=1 µYi→X(X) with µYi→X(X) := P (Yi=yi |X)

– message propagation: bi(Xi) :=
∏
C∈∂i µC→i(Xi)
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Message propagation
• on tree structures: (see also Bishop: Pattern Regocnition)

µC→X

X

Y2

Y1

C

F (X,Y1, .., Yn)

BP message
for a sub-tree

µC→X(X) :=
P

Y1:n
F (X,Y1, .., Yn)

=
P

Y1,Y2
C(X,Y1, Y2) µY1→C µY2→C

messages subsume the information from a whole sub-tree
such that (as in Naive Bayes) the belief is the product of independent
informations:

bi(Xi) =
∏
C∈∂i µC→i(Xi) 4/14



Message propagation

• BP can also be implemented on loopy graphs:
1) we can’t resolve recursion of msg. eqns→ update eqns
2) marginal consistency is a fixed poing of BP update eqns∑

XC\Xi

b(XC) =
∑

XD\Xi

b(XD) = b(Xi)

3) problem: we multiply/fuse dependent information
4) may diverge
5) ongoing theory: Bethe approx., loop correction, generalized BP, etc
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Learning & inference

Expectation Maximization

structured output

likelihood maximization

LEARNING a model

USING a model information processing

inference

planning
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Learning

• Maximum Likelihood:
learn parameters θ of P (X; θ) such that complete data log-likelihood
for data D = {xi}ni=1 is maximal:

L(θ) =
n∑
i=1

logP (xi ; θ)

• structured output (Ulf Brefeld): given “external” inputs x
– learn a mapping x 7→ P (y|x; w) from x to a distribution over outputs y
– learn a “conditional” distribution, typically in the form

P (y|x; w) ∝ exp{〈w,Φ(x, y)〉}

– w parameterizes how the distribution over y depends on the input x

• Expectation Maximization: learning P (X,Y ) without observing X... 7/14



Summary

• we addressed the core of

• information processing, in a literal sense, in terms of probabilistic
inference, messages, multiplying, marginalizing, etc

• learning, in the sense of learning how information/RVs are coupled (also
to input)↔ learning parameters of joint (or conditional) distributions

• so, isn’t that all we need for AI? Why not?
– computational limits
– representations...
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Representations I

• Have you noticed:
In every example so far we started with saying
“Let there be n RVs X1:n with domain ... ”
– Let there be binary RVs “Toothacke, Cavity”
– Let there be binary RVs “Battery, Gauge, Fuel, TurnOver, Start”
– Let there be binary RVs D,X,E,B,L, T, S,A (Asia network)
– Let there be binary RVs “Rain, Sprinkler, Holmes, Watson”

• We always assume to know what are the relevant quantities (RVs) for
which to represent information – also for the latent/unobservable
information!
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Representations II

• Could we not have a system that invents its own internal variables?

Develops own internal representations which allow it to concisely
model the data?

Don’t humans invent/develop new concepts/categories/quantities
exactly for that purpose?
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Representations III

• These are very hard and open problems:
– a related research field is called “structure learning”

• easier part: given we know which RVs exist, learn which are coupled
• medium part: we know there is a certain semantic RV, but don’t know

how many values it can have (dom(X) unknown) (some buzzwords:
Dirichlet allocation, Chinese Restaurant Process, infinite HMMs, etc)

• harder part: we don’t know which RVs might even exist, are latent in the
data, or which should be introduced to model the data

• Example: Imagine an artifical system watching tons of movies
– it is tabula rasa, doesn’t know what exists, only sees video pixels
– perhaps its intrinsic goal is to model (=“understand”?) what it sees
– will/should it develop a RV for cows??
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Representations IV

• Graphical Models:
– one RV↔ one semantic quantity
– usually explicitly defined by a human as part of the model definition
– in many applications is is perfectly ok!
– but very hard to address the above mentioned questions..
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Other kinds of “networks”

• Neural Networks

input

output

activation of neurons ∼ representation of information

• More closely related to Graphical models:
– Helmholtz machine
– Boltzmann machine, restricted Boltzmann machine (RBM)
– layers of RBMs (Hinton’s deep networks)
– auto-encoders
– new ideas needed! 13/14



Conclusions

• Graphical models give a concise framework for
– information processing, in terms of probabilistic inference, message
propagation, etc
– learning from data, in terms of learning how variables are coupled in
a joint probability distribution

• current research:
– on the one hand, graphical models become more and more a
standard tool in applications and engineering
– on the other hand, research in Machine Learning also seeks for
alternative approaches to learn and develop representations

Bengio, Yoshua and LeCun, Yann: Scaling learning algorithms towards AI
Rodney Douglas et al.: Future Challenges for the Science and Engineering of Learning
Thomas G. Dietterich et al.: Structured machine learning: the next ten years
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