Introduction to Graphical Models lecture 12 - summary \& open problems

Marc Toussaint
TU Berlin

Information

- inference in graphical models is about information processing...
- what is information?
- Shannon Entropy

$$
H(X)=-\sum_{X} P(X) \log P(X)
$$

- information \leftrightarrow neg entropy, (non-uniform) probability distribution
- we use probability distribution as an information calculus
(Bayesian vs. frequentist (description of repeatable experiments) view on probabilities)
David MacKay: Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003
- Graphical models
= joint probability distribution over multiple variables
\rightarrow allow information processing between multiple variables

Core operations on information

1. summing/marginalizing

- marginalizes a joint distribution $P(X)=\sum_{Y} P(X, Y)$
- "eliminate Y " "subsume information on Y " "resolve coupling to Y "

2. product

- fusing (independent) information
- Bayes rule $P(X \mid Y) \propto P(Y \mid X) P(X), \quad$ posterior \propto likelihood \cdot prior
- Naive Bayes

$P\left(X \mid Y_{1: n}\right) \propto P(X) \prod_{i=1}^{n} \mu_{Y_{i} \rightarrow X}(X)$ with $\quad \mu_{Y_{i} \rightarrow X}(X):=P\left(Y_{i}=y_{i} \mid X\right)$
- message propagation: $\quad b_{i}\left(X_{i}\right):=\prod_{C \in \partial i} \mu_{C \rightarrow i}\left(X_{i}\right)$

Message propagation

- on tree structures: (see also Bishop: Pattern Regocnition)

messages subsume the information from a whole sub-tree such that (as in Naive Bayes) the belief is the product of independent informations:

$$
b_{i}\left(X_{i}\right)=\prod_{C \in \partial i} \mu_{C \rightarrow i}\left(X_{i}\right)
$$

Message propagation

- BP can also be implemented on loopy graphs:

1) we can't resolve recursion of msg. eqns \rightarrow update eqns
2) marginal consistency is a fixed poing of BP update eqns

$$
\sum_{X_{C} \backslash X_{i}} b\left(X_{C}\right)=\sum_{X_{D} \backslash X_{i}} b\left(X_{D}\right)=b\left(X_{i}\right)
$$

3) problem: we multiply/fuse dependent information
4) may diverge
5) ongoing theory: Bethe approx., loop correction, generalized BP, etc

Learning \& inference

LEARNING a model	likelihood maximization structured output
	Expectation Maximization
USING a model	inference information processing planning

Learning

- Maximum Likelihood:
learn parameters θ of $P(X ; \theta)$ such that complete data log-likelihood for data $D=\left\{x_{i}\right\}_{i=1}^{n}$ is maximal:

$$
L(\theta)=\sum_{i=1}^{n} \log P\left(x_{i} ; \theta\right)
$$

- structured output (Ulf Brefeld): given "external" inputs x
- learn a mapping $x \mapsto P(y \mid x ; \boldsymbol{w})$ from x to a distribution over outputs y
- learn a "conditional" distribution, typically in the form

$$
P(y \mid x ; \boldsymbol{w}) \propto \exp \{\langle\boldsymbol{w}, \boldsymbol{\Phi}(x, y)\rangle\}
$$

- \boldsymbol{w} parameterizes how the distribution over y depends on the input x
- Expectation Maximization: learning $P(X, Y)$ without observing $X \ldots$

Summary

- we addressed the core of
- information processing, in a literal sense, in terms of probabilistic inference, messages, multiplying, marginalizing, etc
- learning, in the sense of learning how information/RVs are coupled (also to input) \leftrightarrow learning parameters of joint (or conditional) distributions
- so, isn't that all we need for AI? Why not?
- computational limits
- representations...

Representations I

- Have you noticed:

In every example so far we started with saying
"Let there be n RVs $X_{1: n}$ with domain ..."

- Let there be binary RVs "Toothacke, Cavity"
- Let there be binary RVs "Battery, Gauge, Fuel, TurnOver, Start"
- Let there be binary RVs D, X, E, B, L, T, S, A (Asia network)
- Let there be binary RVs "Rain, Sprinkler, Holmes, Watson"
- We always assume to know what are the relevant quantities (RVs) for which to represent information - also for the latent/unobservable information!

Representations II

- Could we not have a system that invents its own internal variables?

Develops own internal representations which allow it to concisely model the data?

Don't humans invent/develop new concepts/categories/quantities exactly for that purpose?

Representations III

- These are very hard and open problems:
- a related research field is called "structure learning"
- easier part: given we know which RVs exist, learn which are coupled
- medium part: we know there is a certain semantic RV, but don't know how many values it can have (dom (X) unknown) (some buzzwords: Dirichlet allocation, Chinese Restaurant Process, infinite HMMs, etc)
- harder part: we don't know which RVs might even exist, are latent in the data, or which should be introduced to model the data
- Example: Imagine an artifical system watching tons of movies
- it is tabula rasa, doesn't know what exists, only sees video pixels
- perhaps its intrinsic goal is to model (="understand"?) what it sees
- will/should it develop a RV for cows??

Representations IV

- Graphical Models:
- one RV \leftrightarrow one semantic quantity
- usually explicitly defined by a human as part of the model definition
- in many applications is is perfectly ok!
- but very hard to address the above mentioned questions..

Other kinds of "networks"

- Neural Networks

activation of neurons \sim representation of information
- More closely related to Graphical models:
- Helmholtz machine
- Boltzmann machine, restricted Boltzmann machine (RBM)
- layers of RBMs (Hinton's deep networks)
- auto-encoders
- new ideas needed!

Conclusions

- Graphical models give a concise framework for
- information processing, in terms of probabilistic inference, message propagation, etc
- learning from data, in terms of learning how variables are coupled in a joint probability distribution
- current research:
- on the one hand, graphical models become more and more a standard tool in applications and engineering
- on the other hand, research in Machine Learning also seeks for alternative approaches to learn and develop representations

Bengio, Yoshua and LeCun, Yann: Scaling learning algorithms towards AI
Rodney Douglas et al.: Future Challenges for the Science and Engineering of Learning
Thomas G. Dietterich et al.: Structured machine learning: the next ten years

