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Motivation

• a humble question: how does thinking work?

• psychology/philosophy:
Rick Grush (Behavioral and Brain Sciences, 2004):
The emulation theory of representation: motor control, imagery, and
perception.
(20 pages + 46 pages commentary & response!)

keywords: Kalman filters, overt & covert actions, imagery
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Motivation

• cognitive sciences:
G. Hesslow (Trends in Cog Sciences, 2002):
Conscious thought as simulation of behaviour and perception.

A ‘simulation’ theory of cognitive function can be based on three
assumptions about brain function.
(1) First, behaviour can be simulated by activating motor structures,
as during an overt action but suppressing its execution.
(2) Second, perception can be simulated by internal activation of
sensory cortex, as during normal perception of external stimuli.
(3) Third, both overt and covert actions can elicit perceptual
simulation of their normal consequences.

A large body of evidence supports these assumptions. It is argued

that the simulation approach can explain the relations between

motor, sensory and cognitive functions and the appearance of an

inner world.
3/20



Motivation

• neuroscience:
Johnson & Redish (J o Neuroscience, 2007): Neural ensembles in CA3
transiently encode paths forward of the animal at a decision point
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Motivation

• bottom line (as I see it...):

– people have this idea of cognition/thinking/planning as internal
simulation

– we need a proper math for this!
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Outline

• Markov Decision Processes as (simplest) formal framework

• Expectation Maximization to learn optimal behavior parameters
(=policy)
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Markov Decision Process I

• Markov process on the random variables of states xt, actions at, and rewards
rt, defined by graphical model
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P (s0:T , a0:T , r0:T ;π) =

P (s0)P (a0|s0;π)P (r0|a0, s0)
QT

t=1 P (st|at-1, st-1)P (at|st;π)P (rt|at, st)

• the world defines: (stationarity: no explicit dependency on time)

P (s0) initial state distribution

P (st+1 | at, st) transition probabilties

P (rt | at, st) reward probabilities

• the agent defines: (π is a parameter of the model)

P (at =a | st =x;π) ≡ πax action probabilities (policy)
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Markov Decision Process II

• what’s the objective?
– collect as much reward as possible (in expectation!)

• expected discounted future return of a policy π

V π = E{
∞∑
t=0

γt rt;π}

with discount factor γ ∈ [0, 1]
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EM for planning I

• address a simplified case:
– we care only for the reward rT at finite time T
– we assume binary rewards: dom(rT ) = {0, 1}

a0 a1 a2 aT

s2s1s0

rT

sT

→ optimize the model parameters π to maximize the likelihood of
observing reward rT = 1!!:

• note: much more latent than observed:
observed variables (“data”): rT =1
latent (unobserved) variables: s0:T , a0:T
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EM for planning II

• “observed data likelihood” (last lecture)

exp L̂(π) = P (rT =1;π)

=
∑

a0:T ,s0:T

P (rT =1, a0:T , s0:T ;π) = E{rT ;π}

• doing the summation exactly is intractable→

• EM algorithm
– E-step: compute posterior over a0:T , s0:T conditioned on “data” rT =1

P (a0:T , s0:T | rT =1;πold)

– M-step: assign policy to new optimum of expected data log-likelihood

πnew = argmax
π

Q(π, πold)
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Example: MDP maze

• states: all locations

• actions: up, down, left, right

• transition probabilities:
– s ∈ wall: completely stuck
– s 6∈ wall: 90% make correct step, 10% make random step
→ keep away from walls!
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Interpretation of the E-step

• the E-step is really interesting:
compute the posterior over states and actions conditioned on “data”
rT =1

• we do as if rT =1 was data – although we (the agent) hasn’t observed
this data (yet)
but we imagine we will observe it in the future

• internal simulation & mental imagery: we imagine to observe the event
rT =1, and we “internally simulate” (compute the posterior over) the
trajectory a0:T , s0:T to get there
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More general case

• what if the true rewards are not binary?
– can rescale true rewards rt such that E{rt | at, st} ∝ P (r̂t=1 | at, st)

• what if we care about all rewards V π = E{
∑∞
t=0 γ

t rt;π}
– we can introduce a “mixture model”
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Mixture models (interlude)

• mixture models are a special case of graphical models

• assume we have random variables X1:N

– the distribution over X1:N depends on another random variable Y

P (X1:N |Y ) =


p1(X1:N ) Y = 1

p2(X1:N ) Y = 2
...

– consequently, the marginal over X1:N is a “mixture” of py ’s:

P (X1:N ) =
∑
Y

P (Y ) P (X1:N |Y ) =
∑
y

P (y) py(X1:N )
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Mixture of finite-time MDPs

• so far we assumed fix final time T and addressed the distribution
P (rT =1, a0:T , s0:T ;π)

– now assume we are uncertain what T , we only have a prior P (T )
P (rT =1, a0:T , s0:T , T ;π) = P (T ) P (rT =1, a0:T , s0:T |T ;π)

• if we choose P (T ) geometric, P (T ) = (1− γ) γT ,

exp L̂(π) = P (rT =1;π)

=
∑

a0:T ,s0:T ,T

P (T ) P (rT =1, a0:T , s0:T |T ;π)

=
∑
T

P (T ) E{rT ;π} = (1− γ)
∑
T

γT E{rT ;π} = (1− γ)V π

⇒ maximization of likelihood rT =1
⇐⇒ maximization of expected discounted future return

⇒ we can compute optimal (in the traditional definition) policies using
Expectation Maximization in P (rT =1, a0:T , s0:T , T ;π) 15/20



Example: POMDP maze

• POMDP = Partially Observable Markov Decision Process
– in POMDPs the agent needs some kind of memory

a0

b1

y1y0

b0

a1 y2

b2

r1r0 r2

a2

s0 s1 s2

• mazes: T-junctions, halls & corridors (379 locations, 1516 states)

16/20



discussion: inference for sensor processing

P (X,Y ) = P (Y |X) P (X)

true state measurement /

observation

X Y

• inference := compute P (X|Y )

• examples:
– HMMs (speech, discrete processes, ...)
– image processing (denoising, super-resolution, segmentation, ...)
– Kalman filters
– etc
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discussion: inference for action planning

probabilistic inference for planning / control / decision making

things to do /

actions

where you want to be
where you are

X Y Z

• rephrase problem of planning as problem of inference!

• infer actions to reach a goal

• link to “internal simulation” (cog. science, Matt Botvinick)
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discussion: inference for action planning

• works for arbitrary networks of goals, constraints, observations, etc.
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→ planning on distributed representations!
– on mixed discrete/continuous representations
– contrasts classical notion of state as one big variable

(value functions, spreading activation, RRTs, configuration space)

– we know how to exploit structure with inference! (ML methods)

→ no distinction between sensor and motor, perception and action!
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• next time:
– summary & open problems
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