Introduction to Graphical Models lecture 5 - Conditional Random Fields

Ulf Brefeld
TU Berlin

- Hidden Markov models
- Contidional random fields (CRFs)

Recall: HMMs

- Hidden Markov models
- generative models for sequential data
- parameters: prior, transition, and observation probabilities
- joint probability:

$$
P\left(X_{1}, \ldots, Y_{1} \ldots\right)=P\left(Y_{1}\right) \prod_{i=1}^{T} P\left(X_{i} \mid Y_{i}\right) \prod_{i=2}^{T} P\left(Y_{i} \mid Y_{i-1}\right)
$$

Learning HMMs

- given: n labeled sequences $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)$
- maximum Likelihood (ML)
- adapt parameters of HMM to data
- HMM: ML reduces to counting
- efficient (one pass over data suffices)
- easy to implement
- exact inference (Viterbi algorithm)
- drawbacks
- P (unobserved token $\left.\mid Y_{i}\right)=0$ (remedy: smoothing techniques)
- generative models optmize the wrong criterion

Today: From HMMs to CRFs

- Use undirected graphical model
- no assumption on directions of dependencies (i.e., WWW, NLP, images, ...)
- sequences: factor graph does not change
- Markov random fields
- Condition joint probability of MRF on observations
- criterion: prediction model
- now: conditional (=discriminative) model

Conditional Random Fields

Markov Random Fields

HMM:

MRF:

- every BN can be translated into equivalent MRF (moralization)
- but: not always necessary (i.g., web pages)
- dependencies now bidirectional

MRF: Joint Probability Distribution

- joint probability factorizes across cliques
- cliques between transitions and label-observation pairs

$$
P\left(X_{1}, \ldots, Y_{1}, \ldots\right)=\frac{1}{Z} \prod_{i=1}^{T} \psi^{o b s}\left(X_{i}, Y_{i}\right) \prod_{i=2}^{T} \psi^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)
$$

- potential functions $\psi^{\text {trans }}\left(Y_{i}, Y_{i-1}\right), \psi^{\text {trans }}\left(Y_{i}, Y_{i-1}\right)$
- Z normalization term (=partition function)

Partition Function

$$
P\left(X_{1}, \ldots, Y_{1}, \ldots\right)=\frac{1}{Z} \prod_{i=1}^{T} \psi^{o b s}\left(X_{i}, Y_{i}\right) \prod_{i=2}^{T} \psi^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)
$$

- the partition function needs to sum over all possible assignments of input and output sequences
- we have:

$$
Z=\sum_{x_{1}, \ldots, x_{T}} \sum_{y_{1}, \ldots, y_{T}} \prod_{i=1}^{T} \psi^{o b s}\left(X_{i}, Y_{i}\right) \prod_{i=2}^{T} \psi^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)
$$

- important for $P\left(X_{1}, \ldots, Y_{1}, \ldots\right)$ being a probability

Potential Functions

$$
P\left(X_{1}, \ldots, Y_{1}, \ldots\right)=\frac{1}{Z} \prod_{i=1}^{T} \psi^{o b s}\left(X_{i}, Y_{i}\right) \prod_{i=2}^{T} \psi^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)
$$

- potential functions $\psi^{\text {trans }}$ (transitions), $\psi^{\text {obs }}$ (label-observ.)
- arbitrary, non-negative, positive functions
- capture relevant dependencies
- defined across cliques
- problem:
- size of largest clique depends on input (i.e., WWW)
- remedy: represent only cliques of size 2 (=Markov network)

Representation

$$
P\left(X_{1}, \ldots, Y_{1}, \ldots\right)=\frac{1}{Z} \prod_{i=1}^{T} \psi^{\text {obs }}\left(X_{i}, Y_{i}\right) \prod_{i=2}^{T} \psi^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)
$$

- sequences
- all cliques are of size 2
- only their number varies with T
- how to choose $\psi^{\text {trans }}, \psi^{o b s}$?
- (remember they have to capture relevant dependencies)
- common assumption (Hammersley \& Clifford theorem):
$-\psi$ is log-linear combination of basis functions ϕ_{j}

Members in the Exponential Family

- basis functions:

$$
\begin{aligned}
\psi^{\text {trans }}\left(Y_{i}, Y_{i-1}\right) & =\exp \left\{\sum_{j=1}^{d_{\text {trans }}} w_{j}^{\text {trans }} \phi_{j}^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)\right\} \\
\psi^{o b s}\left(X_{i}, Y_{i}\right) & =\exp \left\{\sum_{j=1}^{d_{o b s}} w_{j}^{\text {obs }} \phi_{j}^{\text {obs }}\left(X_{i}, Y_{i}\right)\right\}
\end{aligned}
$$

- math turns out to be nice!
- write:

$$
\begin{aligned}
P\left(X_{1}, \ldots, Y_{1}, \ldots\right)=\frac{1}{Z} & \prod_{i=1}^{T} \exp \left\{\sum_{j=1}^{d_{o b s}} w_{j} \phi_{j}^{\text {obs }}\left(X_{i}, Y_{i}\right)\right\} \\
& \prod_{i=2}^{T} \exp \left\{\sum_{j=1}^{d_{\text {trans }}} w_{j} \phi_{j}^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)\right\}
\end{aligned}
$$

Basis Functions: label-label

$$
\psi^{\text {trans }}\left(Y_{i}, Y_{i-1}\right)=\exp \left\{\sum_{j=1}^{d_{\text {trans }}} w_{j}^{\text {trans }} \phi_{j}^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)\right\}
$$

- simple case: indicator functions

$$
\begin{aligned}
& \phi_{1}^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)=\left[\left[Y_{i-1}=\text { noun } \wedge Y_{i}=\text { noun }\right]\right] \\
& \phi_{2}^{\text {trans }}\left(Y_{i-1}, Y_{i}\right)=\left[\left[Y_{i-1}=\text { noun } \wedge Y_{i}=\text { verb }\right]\right] \\
& \vdots \vdots \\
& \phi_{d_{\text {trans }} \text { trans }}\left(Y_{i-1}, Y_{i}\right)=\left[\left[Y_{i-1}=\text { adverb } \wedge Y_{i}=\text { adverb }\right]\right]
\end{aligned}
$$

- similar to HMM
- later more...

Basis Functions: label-observation

$$
\psi^{o b s}\left(X_{i}, Y_{i}\right)=\exp \left\{\sum_{j=1}^{d_{o b s}} w_{j}^{o b s} \phi_{j}^{o b s}\left(X_{i}, Y_{i}\right)\right\}
$$

- simple case: indicator functions

$$
\begin{array}{cc}
\phi_{1}^{o b s}\left(X_{i}, Y_{i}\right)=\left[\left[X_{i}=\text { Aachen } \wedge Y_{i}=\text { noun }\right]\right] \\
\phi_{2}^{o b s}\left(X_{i}, Y_{i}\right)=\left[\left[X_{i}=\text { Aar } \wedge Y_{i}=\text { noun }\right]\right] \\
\vdots & \vdots \\
\phi_{d_{o b s}}^{\text {obs }}\left(X_{i}, Y_{i}\right)=\left[\left[X_{i}=\text { ZZ-top } \wedge Y_{i}=\text { adverb }\right]\right]
\end{array}
$$

- similar to HMM
- later more...

Putting Everything Together...

$$
\begin{aligned}
& P(\mathbf{x}, \mathbf{y})=\frac{1}{Z} \prod_{i=1}^{T} \exp \left\{\sum_{j=1}^{d_{o}} w_{j}^{o} \phi_{j}^{o}\left(x_{i}, y_{i}\right)\right\} \prod_{i=2}^{T} \exp \left\{\sum_{j=1}^{d_{t}} w_{j}^{t} \phi_{j}^{t}\left(y_{i-1}, y_{i}\right)\right\} \\
& =\frac{1}{Z} \prod_{i=1}^{T} \exp \left\{\left\langle\mathbf{w}^{o}, \phi^{o}\left(x_{i}, y_{i}\right)\right\rangle\right\} \prod_{i=2}^{T} \exp \left\{\left\langle\mathbf{w}^{t}, \phi^{t}\left(y_{i-1}, y_{i}\right)\right\rangle\right\} \\
& =\frac{1}{Z} \exp \left\{\sum_{i=1}^{T}\left\langle\mathbf{w}^{o}, \phi^{o}\left(x_{i}, y_{i}\right)\right\rangle\right\} \exp \left\{\sum_{i=2}^{T}\left\langle\mathbf{w}^{t}, \phi^{t}\left(y_{i-1}, y_{i}\right)\right\rangle\right\} \\
& =\frac{1}{Z} \exp \left\{\left\langle\mathbf{w}^{o}, \sum_{i=1}^{T} \phi^{o}\left(x_{i}, y_{i}\right)\right\rangle\right\} \exp \left\{\left\langle\mathbf{w}^{t}, \sum_{i=2}^{T} \phi^{t}\left(y_{i-1}, y_{i}\right)\right\rangle\right\} \\
& =\frac{1}{Z} \exp \{\langle\underbrace{\binom{\mathbf{w}^{o}}{\mathbf{w}^{t}}}_{=: \mathbf{w}}, \underbrace{\binom{\sum_{i=1}^{T} \phi^{o}\left(x_{i}, y_{i}\right)}{\sum_{i=2}^{T} \phi^{t}\left(y_{i-1}, y_{i}\right)}}_{=: \Phi(\mathbf{x}, \mathbf{y})}\rangle\} \\
& =\frac{1}{Z} \exp \{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle\}
\end{aligned}
$$

Joint Feature Representation

- joint representation of input and output variables:

$$
\Phi(\mathbf{x}, \mathbf{y})=\left(\sum_{i=1}^{T} \phi^{o}\left(x_{i}, y_{i}\right), \sum_{i=2}^{T} \phi^{t}\left(y_{i-1}, y_{i}\right)\right)^{\prime}
$$

- Example for HMM-alike basis functions:
- $\Phi(\mathbf{x}, \mathrm{y})$ counts how many times ...
- ... a noun is followed by verb (summing over transitions)
- ... the token Aachen is observed as a noun (sum over obs-label)
- dimensionality of Φ is $\operatorname{dom}\left(x_{i}\right) \times \operatorname{dom}\left(y_{i}\right)+\operatorname{dom}\left(y_{i}\right)^{2}$
- POS-tagging:
- dictionary size 20,000 tokens, 36 POS-tags, $\operatorname{dim}(\Phi)=721296$

Example

Features

- Features are engineered to capture important relations/dependencies
- all time favorites for natural language text:
- n-grams (English: -ing, German: -ung, -heit, -keit)
- surface clues (capitalization, all-caps, ...)
- foreign symbols (α, ω, \ldots)
- numbers (42, 1984, ...)
- CRFs allow for rich feature spaces
- CRFs may contain any number of basis functions
- basis functions can be defined on the entire input sequence
- basis functions do need not have a probabilistic interpretation.

More Features / Relation to HMM

- observation-label/transitions can depend on input
$-\phi^{\text {trans }}\left(y_{t-1}, y_{t}\right) \rightarrow \phi^{\text {trans }}\left(y_{t-1}, y_{t} ; x_{t}\right)$
- or even: $\phi^{\text {trans }}\left(y_{t-1}, y_{t}\right) \rightarrow \phi^{\text {trans }}\left(y_{t-1}, y_{t} ; \mathbf{x}\right)$
- similarly: $\phi^{o b s}\left(x_{t}, y_{t}\right) \rightarrow \phi^{o b s}\left(\mathbf{x}, y_{t}\right)$
- (alternative graph structure)
- Implications for HMMs
- Multi-bernoulli/nomial distribution
- Generally infeasible

The Exponential Family

$$
P(\mathbf{x}, \mathbf{y})=\frac{1}{Z} \exp \{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle\}
$$

- $P(\mathbf{x}, \mathbf{y})$ is a member in the exp. family, rewrite in canonical form

$$
P(\mathbf{x}, \mathbf{y})=\exp \{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle-\log Z\}
$$

- Identify the terms:
$-\Phi(\mathbf{x}, \mathbf{y})$ is the sufficient statistics
-w is the natural parameter
$-\log Z<\infty$ is the moment generating function

Conditional Markov Random Fields

- joint probability

$$
P(\mathbf{x}, \mathbf{y})=\frac{1}{Z} \exp \{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle\}
$$

- partition function: $Z=\sum_{\mathbf{x}} \sum_{\mathbf{y}} \exp \{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle\}$
- condition on the observation
- apply the rule: $P(\mathbf{y} \mid \mathbf{x})=P(\mathbf{x}, \mathbf{y}) / P(\mathbf{x})$
- obtain new partition function:

$$
Z(\mathbf{x})=\sum_{\mathbf{y}} \exp \{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle\}
$$

- obtain a so-called conditional random field (CRF)

$$
P(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z(\mathbf{x})} \exp \{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle\}
$$

Training CRFs with Maximum Likelihood

- given n input output examples $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)$
- the log-likelihood is given

$$
\log \mathcal{L}=\sum_{i=1}^{n}\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)\right\rangle-\log Z\left(\mathbf{w} \mid \mathbf{x}_{i}\right)
$$

- differentiating wrt w gives

$$
\frac{\partial}{\partial \mathbf{w}} \log \mathcal{L}=\mathbf{E}_{\hat{p}(X, Y)}[\Phi(X, Y)]-\sum_{i=1}^{n} \mathbf{E}_{p\left(Y \mid \mathbf{x}_{i} ; \mathbf{w}\right)}\left[\Phi\left(Y, \mathbf{x}_{i}\right)\right]
$$

- empirical distribution of data \hat{p}
- model distribution p

Optimization

- direct optimization is expensive and often infeasible
- E.g., calculating the partition function is time consuming if at all possible
- Many differerent optimization strategies have been proposed:
- linear programming (Roth \& Li, 2005)
- iterative scaling (Lafferty et al., 2001)
- conjugate gradients (Sha \& Pereira, 2003)
- Gauss-Newton subspace optimization (Altun et al., 2004)
- gradient tree boosting (Dietterich et al., 2004)
- stochastic meta descent (Vishwanathan et al., 2006)
- perceptron algorithm (Altun et al., 2003)
-...

The Perceptron Algorithm for CRFs

CRF vs. HMM

- characteristics:
- CRF: undirected graph, conditional models
- HMM: directed BN,. generative model
- CRFs generalize HMMs
- CRFs allow for rich feature spaces
- HMMs restricted to implicit bag-of-words representation
- Optimization
- CRF: difficult, complex optimization problem
- HMM: simple, easy to implement
- Similarities:
- inference algorithms (Viterbi, sum-product)

Posterior vs. MAP

- Once optimal parameters w^{*} are found these are used as plug-in estimates $P\left(\mathbf{y} \mid \mathbf{x} ; \mathbf{w}^{*}\right)$
- posterior distribution allows for computing confidence intervals
- However, the full posterior is not always needed
- often, the maximum a posteriori (MAP) estimate suffices
- e.g., prediction model $\hat{\mathbf{y}}=\operatorname{argmax}_{\mathbf{y}} P(\mathbf{y} \mid \mathbf{x})$
- computing MAP estimates is much cheaper than full posterior!

Computing MAP Estimates

- For MAP estimates compute

$$
\begin{aligned}
\hat{\mathbf{y}} & =\underset{\mathbf{y}}{\operatorname{argmax}} P(\mathbf{y} \mid \mathbf{x}) \\
& =\underset{\mathbf{y}}{\operatorname{argmax}} \frac{1}{Z(\mathbf{x})} \exp \{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle\} \\
& =\underset{\mathbf{y}}{\operatorname{argmax}}\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle
\end{aligned}
$$

- because exp is a monotone function and $\frac{1}{Z(\mathbf{x})}$ is constant
- We arrive at:

$$
P(\mathbf{x}, \mathbf{y}) \propto \underbrace{\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle}_{=: f(\mathbf{x}, \mathbf{y})}
$$

Outlook

- adapt $f(\mathbf{x}, \mathbf{y})=\langle\mathbf{w}, \Phi(\mathbf{x}, \mathbf{y})\rangle$ to data
- perceptron algorithm
- primal: efficient, nof parameters $=\operatorname{dim}(\Phi)$
- dual: nof parameters = nof possible output sequences
- dual perceptron
- explicit representation is infeasible
- solve implicitly by column generation
- examples

