Overview • graphical models **Introduction to Graphical Models** - Bayesian networks lecture 5 - Learning - Markov random fields Ulf Brefeld **TU Berlin** • inference - belief propagation - loopy belief propagation - parameter estimation for graphical models - maximum likelihood • assumption: - graph structure is known - probability tables are known - realistic? 1/?? 2/??

Learning

- Nomenclature
 - Input variables / observations: x
 - Output variables / targets: y
- Recall: P(y|X = x) = P(x|y)P(y)/P(x)
- Model:
- choose a parametric model $P(x|y;\theta)$
- adapt parameters θ to data
- How can we choose θ to best approximate the true density p(x)

Supervised vs. Unsupervised Settings

- Task: estimate parameters θ
- supervised learning problems
 - given *n* input-output pairs $(x_1, y_1), \ldots, (x_n, y_n)$
 - $-x \in \mathfrak{X} \text{ and } y \in \mathfrak{Y}$
 - maximum likelihood (ML)
- unsupervised learning problems
 - only n observations are given: $x_1, x_2, \ldots, x_n \in \mathfrak{X}$
 - (later in this lecture)

Maximum Likelihood

• For points generated independently and identically distributed (iid) from p(X = x | Y = y), the likelihood of the data is

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} p(x_i|y;\theta)$$

• Often convenient to take logs,

$$L(\theta) = \log \mathcal{L}(\theta) = \sum_{i=1}^{n} \log p(x_i|y;\theta)$$

• Maximum likelihood chooses θ to maximize \mathcal{L} (and thus L)

Example: multinomial distribution

- Consider an experiment with n independent trials
- Each trial can result in any of *r* possible outcomes (e.g., a die)
- p_i denotes the probability of outcome i, $\sum_{i=1}^{r} p_i = 1$
- n_i denotes the number of trials resulting in outcome i, $\sum_{i=1}^{r} n_i = n$
- The likelihood is given by

$$\mathcal{L}(p_1,\ldots,p_r) = \prod_{i=1}^r p_i^{n_i}$$

Show that the maximum likelihood estimate for p_i is p̂_i = n_i/n – proof in Davis & Jones, ML Estimation for the Multinomial Distribution, Teaching Statistics 14(3), 1992

5/??

Applications

- part-of-speech tagging
 - input: sentence (=observation)
 - output: sequence of part-of-speech tags (= latent variables)
- named entity recognition (NER)
 - input: sentence (=observation)
- output: sequence of named entites (time, person, location, organization, ...)
- protein secondary structure prediction
 - input: primary structure
 - output: secondary structure

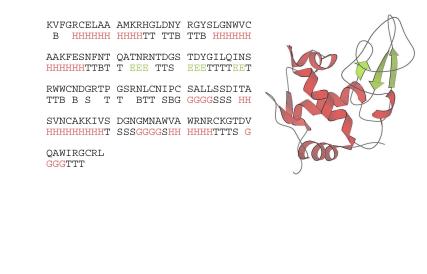
Example: Natural Language Processing

- Part-of-speech tagging:
 - input: "Curiosity kills the cat."
 - output: <noun, verb, determiner, noun>
- named entity recognition (NER)
 - input: "Robert Enke was born in August 1977 in Jena."
 - output: $<\mbox{person},\mbox{person},\mbox{o},\mbox{o},\mbox{date},\mbox{date},\mbox{o},\mbox{location}>$
- NER also relevant in biomedical applications: gene/protein detection

6/??

Protein Secondary Structure Prediction

• example:



Label Sequence Learning

- formalization:
 - input: sequence $\mathbf{x} = x_1, x_2, \dots, x_T$
- output: sequence $\mathbf{y} = y_1, y_2, \dots, y_T$
- elements in x and y are not iid!
- Structure is determined by length of input sequence
- goal:
 - prediction model: $P(\mathbf{y}|\mathbf{x}; \boldsymbol{\theta})$
 - given a new sentence \mathbf{x}' , compute prediction $\hat{\mathbf{y}}$:

 $\hat{\mathbf{y}} = \operatorname{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}'; \boldsymbol{\theta})$

- capture dependencies between neighboring words

9/??

Approaches

- flat approaches (naive Bayes, SVM, ...)
 - indendence assumption on words of a sentence
 - cannot exploit dependencies

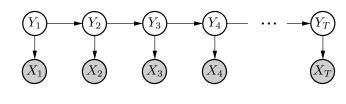
Approaches

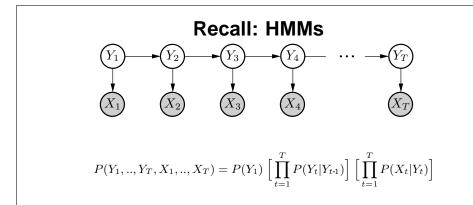
- flat approaches (naive Bayes, SVM, ...)
 - indendence assumption on words of a sentence
 - cannot exploit dependencies
- flat appraoches w/ sliding windows
 - capture dependencies within window
 - long-range dependencies are not detected

10/??

Approaches

- flat approaches (naive Bayes, SVM, ...)
 - indendence assumption on words of a sentence
 - cannot exploit dependencies
- flat appraoches w/ sliding windows
 - capture dependencies within window
- long-range dependencies are not detected
- Preliminary solution: employ first-order hidden Markov model:

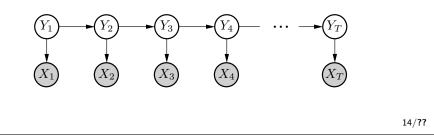




- multinomial distributions:
- priors: $P(Y_1)$
- emissions: $P(X_t|Y_t)$
- transitions: $P(Y_t|Y_{t-1})$

Part-of-Speech Tagging

- Given:
 - given n pairs $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)$
 - $\mathbf{x}_i = x_{i1}, \ldots, x_{iT_i}$ is the *i*-th input sequence
 - $-\mathbf{y}_i = y_{i1}, \ldots, y_{iT_i}$ is the *i*-th annotation
 - $-dom(x_{ij}) = \{ Aachen, Aar, \dots, ZZ-top \}$
 - $-dom(y_{ij}) = \{$ noun, verb, determiner, . . . $\}$
- Graphical model:



Parameter Estimation

• Maximum likelihood says:

- Priors:
$$\pi_i = P(y_1 = \sigma_i) = \frac{1}{n} \sum_{k=1}^n [[y_{k1} = \sigma_i]]$$

- emissions:

$$P(x_t = w | y_t = \sigma_i) = \frac{\sum_{k=1}^n \sum_{p=1}^{T_k} [[y_{kp} = = \sigma_i \land x_{kp} = = w]}{\sum_{k=1}^n \sum_{p=1}^{T_k} [[y_k = = \sigma_i]]}$$

- transitions:

$$P(y_{t+1} = \sigma_j | y_t = \sigma_i) = \frac{\sum_{k=1}^n \sum_{p=1}^{T_k} [[y_{kp} = = \sigma_i \land y_{k,p+1} = = \sigma_j]]}{\sum_{k=1}^n \sum_{p=1}^{T_k} [[y_k = = \sigma_i]]}$$

13/??

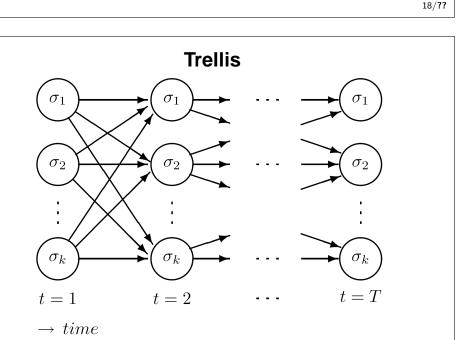
Applying the trained HMM

- HMM can be adapted to data with maximum likelihood
- Once the probabilities are estimated, the HMM can be used for prediction
- 2 possibilities:
 - use sum-product algorithm to optimize $P(y_t|x_1,\ldots,x_T)$
- use max-product algorithm to optimize $P(y_1, \ldots, y_T | x_1, \ldots, x_T)$ - max-product for first-order hidden Markov models is called
- Viterbi algorithm

17/??

Viterbi Algorithm

- initialize $\delta_1(\sigma_i) = P(y_1 = \sigma_i)P(x_1|y_1 = \sigma_i)$
- initialize $\psi_1(\sigma_i) = 0$
- loop $j = 1, ..., |\Sigma|$ and t = 1, ..., T 1: $- \delta_{t+1}(\sigma_j) = \left[\max_i \delta_t(i)P(y_{t+1} = \sigma_j | y_t = \sigma_i)\right]P(x_{t+1} | y_{t+1} = \sigma_j)$ $- \psi_{t+1}(\sigma_j) = \left[\operatorname{argmax}_t \delta_t(i)P(y_{t+1} = \sigma_j | y_t = \sigma_i)\right]P(x_{t+1} | y_{t+1} = \sigma_j)$ • termination: $y_T^* = \operatorname{argmax}_i \delta_T(\sigma_i)$ • loop t = T - 1, ..., 1
- 100p $t \equiv 1 1, \dots, 1$ - $y_t^* = \psi_{t+1}(y_{t+1}^*)$



Viterbi Algorithm

- Compute: $\operatorname{argmax}_{y_1,\ldots,y_T} P(y_1,\ldots,y_T|x_1,\ldots,x_T)$
- Define $\delta_{t+1}(\sigma_i) = \max_{y_1, \dots, y_t} P(y_1, \dots, y_{t+1} = \sigma_i, x_1, \dots, x_{t+1})$

 $-\delta_{t+1}(\sigma_i)$ is the best score along a single path up to time t+1which account for the first t+1 observations and ends in state σ_i at time t+1

- apply $\delta_{t+1}(\sigma_i)$ recursively, similar to forward-backward algorithm (except that a max than sum operation is used)
- see also: Rabiner, Proc. IEEE 77(2), 1989 pp. 257-285

Limitations of HMMs

- Long-range dependencies are not captured
 - a remedy might be higher-order HMMs
 - computationally demanding
- probabilities need to be smoothed
 - unobserved words (and sequences including them) will always have zero probability
 - a common approach that does not work very well is Laplace smoothing:

$$P(x_t = w | y_t = \sigma_i) = \frac{1 + \sum_{k=1}^n \sum_{p=1}^{T_k} [[y_{kp} = \sigma_i \land x_{kp} = w]]}{|dom(x_t)| + \sum_{k=1}^n \sum_{p=1}^{T_k} [[y_k = \sigma_i]]}$$

21/??

More Severe Limitations of HMMs

- HMMs are generative models
 - HMMs address the joint probability $\mathit{P}(\mathbf{x},\mathbf{y})$
 - we are interested in discriminative models $\mathit{P}(\mathbf{y}|\mathbf{x})$
 - HMMs optimize the wrong criterion!
- Next time:
 - Use Markov random field instead of Bayesian network
 - Condition joint probability on the observations
 - Conditional random fields