
Introduction to Graphical Models

lecture 5 - Learning

Ulf Brefeld

TU Berlin

– parameter estimation for graphical models

– maximum likelihood

1/??

Overview

• graphical models

– Bayesian networks

– Markov random fields

• inference

– belief propagation

– loopy belief propagation

• assumption:

– graph structure is known

– probability tables are known

– realistic?

2/??

Learning

• Nomenclature

– Input variables / observations: x

– Output variables / targets: y

• Recall: P (y|X = x) = P (x|y)P (y)/P (x)

• Model:

– choose a parametric model P (x|y; θ)

– adapt parameters θ to data

– How can we choose θ to best approximate the true density p(x)

3/??

Supervised vs. Unsupervised Settings

• Task: estimate parameters θ

• supervised learning problems

– given n input-output pairs (x1, y1), . . . , (xn, yn)

– x ∈ X and y ∈ Y

– maximum likelihood (ML)

• unsupervised learning problems

– only n observations are given: x1, x2, . . . , xn ∈ X

– (later in this lecture)

4/??

Maximum Likelihood

• For points generated independently and identically distributed

(iid) from p(X = x|Y = y), the likelihood of the data is

L(θ) =
n

∏

i=1

p(xi|y; θ)

• Often convenient to take logs,

L(θ) = log L(θ) =

n
∑

i=1

log p(xi|y; θ)

• Maximum likelihood chooses θ to maximize L (and thus L)

5/??

Example: multinomial distribution

• Consider an experiment with n independent trials

• Each trial can result in any of r possible outcomes (e.g., a die)

• pi denotes the probability of outcome i,
r

∑

i=1

pi = 1

• ni denotes the number of trials resulting in outcome i,
r

∑

i=1

ni = n

• The likelihood is given by

L(p1, . . . , pr) =

r
∏

i=1

pni

i

• Show that the maximum likelihood estimate for pi is p̂i = ni

n

– proof in Davis & Jones, ML Estimation for the Multinomial

Distribution, Teaching Statistics 14(3), 1992

6/??

Applications

• part-of-speech tagging

– input: sentence (=observation)

– output: sequence of part-of-speech tags (= latent variables)

• named entity recognition (NER)

– input: sentence (=observation)

– output: sequence of named entites (time, person, location,

organization, ...)

• protein secondary structure prediction

– input: primary structure

– output: secondary structure

7/??

Example: Natural Language Processing

• Part-of-speech tagging:

– input: ”Curiosity kills the cat.“

– output: <noun, verb, determiner, noun>

• named entity recognition (NER)

– input: ”Robert Enke was born in August 1977 in Jena.“

– output: < person, person, o, o, o, date, date, o, location>

• NER also relevant in biomedical applications: gene/protein

detection

8/??

Protein Secondary Structure Prediction

• example:

9/??

Label Sequence Learning

• formalization:

– input: sequence x = x1, x2, . . . , xT

– output: sequence y = y1, y2, . . . , yT

– elements in x and y are not iid!

• Structure is determined by length of input sequence

• goal:

– prediction model: P (y|x;θ)

– given a new sentence x
′, compute prediction ŷ:

ŷ = argmax
y
P (y|x′;θ)

– capture dependencies between neighboring words

10/??

Approaches

• flat approaches (naive Bayes, SVM, ...)

– indendence assumption on words of a sentence

– cannot exploit dependencies

11/??

Approaches

• flat approaches (naive Bayes, SVM, ...)

– indendence assumption on words of a sentence

– cannot exploit dependencies

• flat appraoches w/ sliding windows

– capture dependencies within window

– long-range dependencies are not detected

12/??

Approaches

• flat approaches (naive Bayes, SVM, ...)

– indendence assumption on words of a sentence

– cannot exploit dependencies

• flat appraoches w/ sliding windows

– capture dependencies within window

– long-range dependencies are not detected

• Preliminary solution: employ first-order hidden Markov model:

Y1 Y2 Y3 Y4

X1 X2 X3 X4 XT

YT

13/??

Part-of-Speech Tagging

• Given:

– given n pairs (x1,y1), . . . , (xn,yn)

– xi = xi1, . . . , xiTi
is the i-th input sequence

– yi = yi1, . . . , yiTi
is the i-th annotation

– dom(xij) = {Aachen,Aar, . . . ,ZZ-top}

– dom(yij) = {noun, verb,determiner, . . .}

• Graphical model:

Y1 Y2 Y3 Y4

X1 X2 X3 X4 XT

YT

14/??

Recall: HMMs
Y1 Y2 Y3 Y4

X1 X2 X3 X4 XT

YT

P (Y1, .., YT , X1, .., XT) = P (Y1)
h

T
Y

t=1

P (Yt|Yt-1)
i h

T
Y

t=1

P (Xt|Yt)
i

• multinomial distributions:

– priors: P (Y1)

– emissions: P (Xt|Yt)

– transitions: P (Yt|Yt-1)

15/??

Parameter Estimation

• Maximum likelihood says:

– Priors: πi = P (y1 = σi) = 1

n

∑n
k=1

[[yk1 == σi]]

– emissions:

P (xt = w|yt = σi) =

Pn

k=1

PTk

p=1
[[ykp == σi ∧ xkp == w]]

Pn

k=1

PTk

p=1
[[yk == σi]]

– transitions:

P (yt+1 = σj |yt = σi) =

Pn

k=1

PTk

p=1
[[ykp == σi ∧ yk,p+1 == σj]]

Pn

k=1

PTk

p=1
[[yk == σi]]

16/??

Applying the trained HMM

• HMM can be adapted to data with maximum likelihood

• Once the probabilities are estimated, the HMM can be used for

prediction

• 2 possibilities:

– use sum-product algorithm to optimize P (yt|x1, . . . , xT)

– use max-product algorithm to optimize P (y1, . . . , yT |x1, . . . , xT)

– max-product for first-order hidden Markov models is called

Viterbi algorithm

17/??

Viterbi Algorithm

• Compute: argmaxy1,...,yT
P (y1, . . . , yT |x1, . . . , xT)

• Define δt+1(σi) = maxy1,...,yt
P (y1, . . . , yt+1 = σi, x1, . . . , xt+1)

– δt+1(σi) is the best score along a single path up to time t+ 1

which account for the first t+ 1 observations and ends in state σi

at time t+ 1

– apply δt+1(σi) recursively, similar to forward-backward

algorithm (except that a max than sum operation is used)

– see also: Rabiner, Proc. IEEE 77(2), 1989 pp. 257-285

18/??

Viterbi Algorithm

• initialize δ1(σi) = P (y1 = σi)P (x1|y1 = σi)

• initialize ψ1(σi) = 0

• loop j = 1, . . . , |Σ| and t = 1, . . . , T − 1:

– δt+1(σj) =
[

max
i
δt(i)P (yt+1 = σj |yt = σi)

]

P (xt+1|yt+1 = σj)

–

ψt+1(σj) =
[

argmax
t

δt(i)P (yt+1 = σj |yt = σi)
]

P (xt+1|yt+1 = σj)

• termination: y∗T = argmaxi δT (σi)

• loop t = T − 1, . . . , 1

– y∗t = ψt+1(y
∗

t+1)

19/??

Trellis

20/??

Limitations of HMMs

• Long-range dependencies are not captured

– a remedy might be higher-order HMMs

– computationally demanding

• probabilities need to be smoothed

– unobserved words (and sequences including them) will always

have zero probability

– a common approach that does not work very well is Laplace

smoothing:

P (xt = w|yt = σi) =
1 +

Pn

k=1

PTk

p=1
[[ykp == σi ∧ xkp == w]]

|dom(xt)| +
Pn

k=1

PTk

p=1
[[yk == σi]]

21/??

More Severe Limitations of HMMs

• HMMs are generative models

– HMMs address the joint probability P (x,y)

– we are interested in discriminative models P (y|x)

– HMMs optimize the wrong criterion!

• Next time:

– Use Markov random field instead of Bayesian network

– Condition joint probability on the observations

– Conditional random fields

22/??

