Introduction to Graphical Models lecture 5 - Learning

Ulf Brefeld
TU Berlin

- parameter estimation for graphical models
- maximum likelihood

Overview

- graphical models
- Bayesian networks
- Markov random fields
- inference
- belief propagation
- loopy belief propagation
- assumption:
- graph structure is known
- probability tables are known
- realistic?

Learning

- Nomenclature
- Input variables / observations: x
- Output variables / targets: y
- Recall: $P(y \mid X=x)=P(x \mid y) P(y) / P(x)$
- Model:
- choose a parametric model $P(x \mid y ; \theta)$
- adapt parameters θ to data
- How can we choose θ to best approximate the true density $p(x)$

Supervised vs. Unsupervised Settings

- Task: estimate parameters θ
- supervised learning problems
- given n input-output pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
$-x \in \mathcal{X}$ and $y \in \mathcal{Y}$
- maximum likelihood (ML)
- unsupervised learning problems
- only n observations are given: $x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}$
- (later in this lecture)

Maximum Likelihood

- For points generated independently and identically distributed (iid) from $p(X=x \mid Y=y)$, the likelihood of the data is

$$
\mathcal{L}(\theta)=\prod_{i=1}^{n} p\left(x_{i} \mid y ; \theta\right)
$$

- Often convenient to take logs,

$$
L(\theta)=\log \mathcal{L}(\theta)=\sum_{i=1}^{n} \log p\left(x_{i} \mid y ; \theta\right)
$$

- Maximum likelihood chooses θ to maximize \mathcal{L} (and thus L)

Example: multinomial distribution

- Consider an experiment with n independent trials
- Each trial can result in any of r possible outcomes (e.g., a die)
- p_{i} denotes the probability of outcome $i, \sum_{i=1}^{r} p_{i}=1$
- n_{i} denotes the number of trials resulting in outcome $i, \sum_{i=1}^{r} n_{i}=n$
- The likelihood is given by

$$
\mathcal{L}\left(p_{1}, \ldots, p_{r}\right)=\prod_{i=1}^{r} p_{i}^{n_{i}}
$$

- Show that the maximum likelihood estimate for p_{i} is $\hat{p}_{i}=\frac{n_{i}}{n}$ - proof in Davis \& Jones, ML Estimation for the Multinomial Distribution, Teaching Statistics 14(3), 1992

Applications

- part-of-speech tagging
- input: sentence (=observation)
- output: sequence of part-of-speech tags (= latent variables)
- named entity recognition (NER)
- input: sentence (=observation)
- output: sequence of named entites (time, person, location, organization, ...)
- protein secondary structure prediction
- input: primary structure
- output: secondary structure

Example: Natural Language Processing

- Part-of-speech tagging:
- input: "Curiosity kills the cat."
- output: <noun, verb, determiner, noun>
- named entity recognition (NER)
- input: "Robert Enke was born in August 1977 in Jena."
- output: < person, person, o, o, o, date, date, o, location>
- NER also relevant in biomedical applications: gene/protein detection

Protein Secondary Structure Prediction

- example:

```
KVFGRCELAA AMKRHGLDNY RGYSLGNWVC
    B HHHHHH HHHHTT TTB TTB HHHHHH
AAKFESNFNT QATNRNTDGS TDYGILQINS
HHHHHHTTBT T EEE TTS EEETTTTEET
RWWCNDGRTP GSRNLCNIPC SALLSSDITA
TTB B S T T BTT SBG GGGGSSS HH
SVNCAKKIVS DGNGMNAWVA WRNRCKGTDV
HHHHHHHHHT SSSGGGGSHH HHHHTTTS G
QAWIRGCRL
GGGTTT
```


Label Sequence Learning

- formalization:
- input: sequence $\mathbf{x}=x_{1}, x_{2}, \ldots, x_{T}$
- output: sequence $\mathbf{y}=y_{1}, y_{2}, \ldots, y_{T}$
- elements in x and y are not iid!
- Structure is determined by length of input sequence
- goal:
- prediction model: $P(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta})$
- given a new sentence \mathbf{x}^{\prime}, compute prediction $\hat{\mathbf{y}}$:

$$
\hat{\mathbf{y}}=\operatorname{argmax}_{\mathbf{y}} P\left(\mathbf{y} \mid \mathbf{x}^{\prime} ; \boldsymbol{\theta}\right)
$$

- capture dependencies between neighboring words

Approaches

- flat approaches (naive Bayes, SVM, ...)
- indendence assumption on words of a sentence
- cannot exploit dependencies

Approaches

- flat approaches (naive Bayes, SVM, ...)
- indendence assumption on words of a sentence
- cannot exploit dependencies
- flat appraoches w/ sliding windows
- capture dependencies within window
- long-range dependencies are not detected

Approaches

- flat approaches (naive Bayes, SVM, ...)
- indendence assumption on words of a sentence
- cannot exploit dependencies
- flat appraoches w/ sliding windows
- capture dependencies within window
- long-range dependencies are not detected
- Preliminary solution: employ first-order hidden Markov model:

Part-of-Speech Tagging

- Given:
- given n pairs $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)$
$-\mathbf{x}_{i}=x_{i 1}, \ldots, x_{i T_{i}}$ is the i-th input sequence
$-\mathbf{y}_{i}=y_{i 1}, \ldots, y_{i T_{i}}$ is the i-th annotation
$-\operatorname{dom}\left(x_{i j}\right)=\{$ Aachen, Aar, \ldots, ZZ-top $\}$
$-\operatorname{dom}\left(y_{i j}\right)=\{$ noun, verb, determiner, $\ldots\}$
- Graphical model:

Recall: HMMs

$$
P\left(Y_{1}, . ., Y_{T}, X_{1}, . ., X_{T}\right)=P\left(Y_{1}\right)\left[\prod_{t=1}^{T} P\left(Y_{t} \mid Y_{t-1}\right)\right]\left[\prod_{t=1}^{T} P\left(X_{t} \mid Y_{t}\right)\right]
$$

- multinomial distributions:
- priors: $P\left(Y_{1}\right)$
- emissions: $P\left(X_{t} \mid Y_{t}\right)$
- transitions: $P\left(Y_{t} \mid Y_{t-1}\right)$

Parameter Estimation

- Maximum likelihood says:
- Priors: $\pi_{i}=P\left(y_{1}=\sigma_{i}\right)=\frac{1}{n} \sum_{k=1}^{n}\left[\left[y_{k 1}==\sigma_{i}\right]\right]$
- emissions:

$$
P\left(x_{t}=w \mid y_{t}=\sigma_{i}\right)=\frac{\sum_{k=1}^{n} \sum_{p=1}^{T_{k}}\left[\left[y_{k p}==\sigma_{i} \wedge x_{k p}==w\right]\right]}{\sum_{k=1}^{n} \sum_{p=1}^{T_{k}}\left[\left[y_{k}==\sigma_{i}\right]\right]}
$$

- transitions:

$$
P\left(y_{t+1}=\sigma_{j} \mid y_{t}=\sigma_{i}\right)=\frac{\sum_{k=1}^{n} \sum_{p=1}^{T_{k}}\left[\left[y_{k p}==\sigma_{i} \wedge y_{k, p+1}==\sigma_{j}\right]\right]}{\sum_{k=1}^{n} \sum_{p=1}^{T_{k}}\left[\left[y_{k}==\sigma_{i}\right]\right]}
$$

Applying the trained HMM

- HMM can be adapted to data with maximum likelihood
- Once the probabilities are estimated, the HMM can be used for prediction
- 2 possibilities:
- use sum-product algorithm to optimize $P\left(y_{t} \mid x_{1}, \ldots, x_{T}\right)$
- use max-product algorithm to optimize $P\left(y_{1}, \ldots, y_{T} \mid x_{1}, \ldots, x_{T}\right)$
- max-product for first-order hidden Markov models is called

Viterbi algorithm

Viterbi Algorithm

- Compute: $\operatorname{argmax}_{y_{1}, \ldots, y_{T}} P\left(y_{1}, \ldots, y_{T} \mid x_{1}, \ldots, x_{T}\right)$
- Define $\delta_{t+1}\left(\sigma_{i}\right)=\max _{y_{1}, \ldots, y_{t}} P\left(y_{1}, \ldots, y_{t+1}=\sigma_{i}, x_{1}, \ldots, x_{t+1}\right)$
$-\delta_{t+1}\left(\sigma_{i}\right)$ is the best score along a single path up to time $t+1$ which account for the first $t+1$ observations and ends in state σ_{i} at time $t+1$
- apply $\delta_{t+1}\left(\sigma_{i}\right)$ recursively, similar to forward-backward algorithm (except that a max than sum operation is used)
- see also: Rabiner, Proc. IEEE 77(2), 1989 pp. 257-285

Viterbi Algorithm

- initialize $\delta_{1}\left(\sigma_{i}\right)=P\left(y_{1}=\sigma_{i}\right) P\left(x_{1} \mid y_{1}=\sigma_{i}\right)$
- initialize $\psi_{1}\left(\sigma_{i}\right)=0$
- loop $j=1, \ldots,|\Sigma|$ and $t=1, \ldots, T-1$:
$-\delta_{t+1}\left(\sigma_{j}\right)=\left[\max _{i} \delta_{t}(i) P\left(y_{t+1}=\sigma_{j} \mid y_{t}=\sigma_{i}\right)\right] P\left(x_{t+1} \mid y_{t+1}=\sigma_{j}\right)$
$\left.\psi_{t+1}\left(\sigma_{j}\right)=\underset{t}{\operatorname{argmax}} \delta_{t}(i) P\left(y_{t+1}=\sigma_{j} \mid y_{t}=\sigma_{i}\right)\right] P\left(x_{t+1} \mid y_{t+1}=\sigma_{j}\right)$
- termination: $y_{T}^{*}=\operatorname{argmax}_{i} \delta_{T}\left(\sigma_{i}\right)$
- loop $t=T-1, \ldots, 1$
$-y_{t}^{*}=\psi_{t+1}\left(y_{t+1}^{*}\right)$

Trellis

Limitations of HMMs

- Long-range dependencies are not captured
- a remedy might be higher-order HMMs
- computationally demanding
- probabilities need to be smoothed
- unobserved words (and sequences including them) will always have zero probability
- a common approach that does not work very well is Laplace smoothing:

$$
P\left(x_{t}=w \mid y_{t}=\sigma_{i}\right)=\frac{1+\sum_{k=1}^{n} \sum_{p=1}^{T_{k}}\left[\left[y_{k p}==\sigma_{i} \wedge x_{k p}==w\right]\right]}{\left|\operatorname{dom}\left(x_{t}\right)\right|+\sum_{k=1}^{n} \sum_{p=1}^{T_{k}}\left[\left[y_{k}==\sigma_{i}\right]\right]}
$$

More Severe Limitations of HMMs

- HMMs are generative models
- HMMs address the joint probability $P(\mathbf{x}, \mathbf{y})$
- we are interested in discriminative models $P(\mathbf{y} \mid \mathbf{x})$
- HMMs optimize the wrong criterion!
- Next time:
- Use Markov random field instead of Bayesian network
- Condition joint probability on the observations
- Conditional random fields

