Introduction to Graphical Models
lecture 5 - Learning

Ulf Brefeld
TU Berlin

— parameter estimation for graphical models
— maximum likelihood
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Overview

e graphical models
— Bayesian networks
— Markov random fields

e inference
— belief propagation
— loopy belief propagation

e assumption:
— graph structure is known
— probability tables are known
— realistic?
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Learning

e Nomenclature
— Input variables / observations: x
— Output variables / targets: y

e Recall: P(y|X =) = P(z|y)P(y)/P(x)

e Model:
— choose a parametric model P(z|y;0)
— adapt parameters 6 to data
— How can we choose 6 to best approximate the true density p(z)
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Supervised vs. Unsupervised Settings

e Task: estimate parameters 6

e supervised learning problems
— given n input-output pairs (z1,y1), ..., (Tn, Yn)
—reXandyelYy
— maximum likelihood (ML)

e unsupervised learning problems
—only n observations are given: z1,x9,...,2, € X
— (later in this lecture)
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Maximum Likelihood

e For points generated independently and identically distributed
(iid) from p(X = z|Y = y), the likelihood of the data is

L) = [ p(ily; 0)
=1
e Often convenient to take logs,
L(0) = log L(0 ZIng (@ily; 0)

e Maximum likelihood chooses 6 to maximize L (and thus L)
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Example: multinomial distribution

Consider an experiment with n independent trials

Each trial can result in any of » possible outcomes (e.g., a die)

T
p; denotes the probability of outcome i, > p; =1
=1

T
n; denotes the number of trials resulting in outcome i, > n; =n
=1
The likelihood is given by

Lp1,-..,pr) = Hp

Show that the maximum likelihood estimate for p; is p; =
— proof in Davis & Jones, ML Estimation for the Multinomial
Distribution, Teaching Statistics 14(3), 1992
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Applications

e part-of-speech tagging
— input: sentence (=observation)
— output: sequence of part-of-speech tags (= latent variables)

e named entity recognition (NER)
— input: sentence (=observation)
— output: sequence of named entites (time, person, location,
organization, ...)

e protein secondary structure prediction
— input: primary structure
— output: secondary structure
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Example: Natural Language Processing

¢ Part-of-speech tagging:
— input: "Curiosity Kills the cat.”
— output: <noun, verb, determiner, noun>

e named entity recognition (NER)
— input: "Robert Enke was born in August 1977 in Jena.”
— output: < person, person, o, 0, o, date, date, o, location>

e NER also relevant in biomedical applications: gene/protein
detection
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Protein Secondary Structure Prediction

e example:
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Label Sequence Learning

o formalization:
— input: sequence x = x1,Zo,...,IT
— output: sequencey = y1,¥y2,...,Yr
— elements in x and y are not iid!

e Structure is determined by length of input sequence

e goal:
— prediction model: P(y|x;8)
— given a new sentence x’, compute prediction y:

y = argmaxy, P(y[x’; 0)
— capture dependencies between neighboring words
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Approaches

o flat approaches (naive Bayes, SVM, ...)
— indendence assumption on words of a sentence
— cannot exploit dependencies
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Approaches

o flat approaches (naive Bayes, SVM, ...)
— indendence assumption on words of a sentence
— cannot exploit dependencies

o flat appraoches w/ sliding windows
— capture dependencies within window
— long-range dependencies are not detected
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Approaches

o flat approaches (naive Bayes, SVM, ...)
— indendence assumption on words of a sentence
— cannot exploit dependencies

o flat appraoches w/ sliding windows
— capture dependencies within window
— long-range dependencies are not detected

e Preliminary solution: employ first-order hidden Markov model:
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Part-of-Speech Tagging

e Given:
— given n pairs (xi.y1) .- -, (Xn, ¥n)
- x; = x;1, ..., T;7, 1S the i-th input sequence
- ¥Yi = ¥i,--., YT IS the i-th annotation

—dom(z;;) = {Aachen, Aar, ..., ZZ-top}
— dom(y;;) = {noun, verb, determiner, ...}

e Graphical model:
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Recall: HMMs

P(Ya,.., Y, X1, . [f[P (Yi[Yia)] [ﬁP(sz)]

t=1 t=1

e multinomial distributions:
— priors: P(Y7)
—emissions: P(X;|Y;)

— transitions: P(Y;|Y:)
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Parameter Estimation
o Maximum likelihood says:
— Priors: m; = P(y1 = 03) = £ 30 [y == o]

— emissions:

= —g) = 21 Zzil[[ykp == 0; A\ Tip == W]
Pz = wlye = 0i) = ST

— transitions:

Dkt Z?—iﬂ[ykp == 0i N Yk,p+1 == 0j]|
P(yty1r = ojlye = 0i) = 1l
2oher 2piallye == 0]
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Applying the trained HMM

e HMM can be adapted to data with maximum likelihood

e Once the probabilities are estimated, the HMM can be used for
prediction

e 2 possibilities:
— use sum-product algorithm to optimize P(y;|x1,...,z1)
— use max-product algorithm to optimize P(y1,...,yr|z1,...,27)
— max-product for first-order hidden Markov models is called
Viterbi algorithm
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Viterbi Algorithm

e Compute: argmax,, .. P(yi,...,yr|*1,...,27)

o Define 6;41(0;) = maxy, .y, P(Y1,- Y1 = 04, T1, ..., T441)
— 0t+1(0;) Is the best score along a single path up to time ¢ + 1
which account for the first ¢ + 1 observations and ends in state o;

attimet 41

— apply d:+1(0;) recursively, similar to forward-backward
algorithm (except that a max than sum operation is used)

— see also: Rabiner, Proc. IEEE 77(2), 1989 pp. 257-285
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Viterbi Algorithm

initialize 51(0i) = P(yl = O'Z')P(J?1|y1 = Ui)
initialize v1(0;) =0
loopj=1,....|¥|andt=1,..., T —1:

= dr41(0y) = [maxdy (i) P(yrer = ojlye = 00) | P(wiga |yrr = 07)

Yiy1(0j) = [argrtnaxét(i)P(ytH = 0jly = 04) | P(@411 |y = 05)
termination: y;. = argmax; d7(0;)

loopt=T-1,...,1

-y = Ye1(yi)
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Trellis
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Limitations of HMMs

e Long-range dependencies are not captured
— a remedy might be higher-order HMMs
— computationally demanding

e probabilities need to be smoothed
— unobserved words (and sequences including them) will always
have zero probability
—a common approach that does not work very well is Laplace
smoothing:

Plae = wly: = 01) = 1+300, ZZil[[ykp ==0i N Thp == W]
' |dom ()| + Y p_y opk s [lye == o4]]
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More Severe Limitations of HMMSs

HMMs are generative models

— HMMs address the joint probability P(x,y)

— we are interested in discriminative models P(y|x)
— HMMs optimize the wrong criterion!

Next time:
— Use Markov random field instead of Bayesian network

— Condition joint probability on the observations
— Conditional random fields
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