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• outline

1) examples for inference & BP:
– HMMs
– MRFs

2) additional comments to BP:
– Junction Trees
– max-product
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Belief Propagation – recap
• general message equations:

µC→i(Xi) =
∑

XC\Xi

ψC(XC)
∏

j∈C,j 6=i

µj→C(Xj) ,

µi→C(Xi) =
∏

D∈ν(i),D 6=C

µD→i(Xi)

• beliefs:

bC(XC) := ψC(XC)
∏
i∈C

µi→C(Xi) , bi(Xi) :=
∏

C∈ν(i)

µC→i(Xi)

• special case: pair-wise factors → variable-to-variable messages:

µj→i(Xi) =
X
Xj

ψC(Xi, Xj)
Y
k:k 6=i

µk→j(Xj) ,

• special case: separators → factor-to-factor messages:

µD→C(Xi) =
X

XD\Xi

ψD(XD)
Y

E:E 6=C

µE→D(XE∩D) ,
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Belief Propagation – recap

µ3

µ2

µ1

Y2

Y3Y1

X

• Naive Bayes:
P (X|Y1:n) ∝ P (X)

∏n
i=1 µi(X)

µi(X) := P (Yi=yi |X)
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Belief Propagation – recap

µY2→X

µY1→X

µC→XX
Y4

Y5

Y6

Y7

Y8

Y2

Y3

Y1

• Belief Propagation bi(X) :=
∏
C∈ν(X) µC→X(X)

– messages represent (indep.) information from branches

– messages are the temporary terms tk(X) that arise when eliminating
(Elim.Alg.) a branch (→ exactness on trees) 4/30



Hidden Markov Models

• used in
– speech recognition
– molecular biology sequences
– linguistic sequences (e.g. part-of-speech tagging)
– multi-electrode spike-train analysis
– tracking objects through time

• ... motivate with data ...
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Hidden Markov Models

• HMM definition:
– a (temporal) sequence of random variables X0, .., XT , each with the
same domain dom(Xt)
– to each Xt and observation RV associated Yi, each with same
domain dom(Yt)
– the joint distribution

P (X0, .., XT , Y0, .., YT ) = P (X0) ·
T∏
t=1

P (Xt|Xt-1) ·
T∏
t=0

P (Yt|Xt) .

• graphically:
X0 X1 X2 X3

Y0 Y1 Y2 Y3 YT

XT
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Properties of HMMs
X0 X1 X2 X3

Y0 Y1 Y2 Y3 YT

XT

• Markov property:
for all a ≤ t and b > t

– Xa conditionally independent from Xb given Xt

– Ya conditionally independent from Yb given Xt

– the future is independent of the past given the present
– note that conditioning on Yt does not yield any conditional
independences
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different inference problems in HMMs

• P (x0:T | y0:T ) inferring hidden state given y0:T

• P (xt | y0:T ) marginal of above

• P (xt | y0:t) filtering

• P (xt | y0:a), t > a prediction

• P (xt | y0:b), t < b smoothing

• P (y0:T ) likelihood calculation

• Find sequence x∗0:T that maximizes P (x0:T | y0:T ) [Viterbi alignment]
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Inference in HMMs

• 1) classical derivation
– good to know, typical notation found in the literature

• 2) derivation from Belief Propagation equations
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Inference in HMMs
• classical derivation

P (xt | y0:T ) =
P (y0:T |xt) P (xt)

P (y0:T )

=
P (y0:t |xt) P (yt+1:T |xt) P (xt)

P (y0:T )

=
P (y0:t, xt) P (yt+1:T |xt)

P (y0:T )

=
α(xt) β(xt)
P (y0:T )

=: γ(xt)

α(xt) = P (y0:t, xt) = φ(yt) P (y0:t-1, xt) , φ(xt) ≡ P (yt|xt)

= φ(yt)
∑
xt-1

P (xt |xt-1) α(xt-1)

β(xt) = P (yt+1:T |xt) =
∑
x+1

P (yt+1:T |xt+1) P (xt+1 |xt)

=
∑
x+1

[
β(xt+1) φ(yt+1)

]
P (xt+1 |xt)
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Inference in HMMs
• derivation from BP equations – variable-to-variable message:

µj→i(Xi) =
∑
Xj

ψC(Xi, Xj)
∏
k:k 6=i

µk→j(Xj) ,

• message in the HMM case

µt-1→t(xt) =
∑
xt-1

P (xt|xt-1) µt-2→t-1(xt-1) φ(xt-1)

µt+1→t(xt) =
∑
xt+1

P (xt+1|xt) µt+2→t+1(xt+1) φ(xt+1)

b(xt) = µt-1→t(xt) φ(xt) µt+1→t(xt)

belief = product of message from past, future, and cur. observation!
• compare to classical:

α(xt) ≡ µt-1→t(xt) φ(xt) ⇒ µt-1→t(xt) ≡ P (y0:t-1, xt)

β(xt) ≡ µt+1→t(xt) ≡ P (yt+1:T |xt)

(asymmetry w.r.t. |xt stems from asymmetry of the factors P (xt|xt-1))12/30



HMMs

• ... demo on binary data ...
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Markov Random Fields

• image denoising example:
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Markov Random Fields

• assume every pixel is a binary (black/white) random variable
Let I = {0, ..,W} × {0, ..,H} be be the index set (height×width)
we have binary random variables Xi for all i ∈ I representing the pixels
of the true image
we have binary randon variable Yi representing the observations
(camera snapshot)

• assume neighboring pixels are coupled

P (xI , yI) ∝
∏
(ij)

ψ(xi, xj) ·
∏
i∈I

φ(xi, yi)

with couplings

ψ(xi, xj) =

 % xi = xj

1− % else
φ(xi, yi) =

 ε xi = yi

1− ε else
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Markov Random Fields

• as a factor graph

X31

XH1

X11 X12 X13 X14 X1W

X21

Y11
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Markov Random Fields

• image denoising is an inference problem
– for given camera image yI compute the most probable true image

argmax
xI

P (xI , yI)
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other applications

• google “conditional random field image”
– Multiscale Conditional Random Fields for Image Labeling (CVPR
2004)
– Scale-Invariant Contour Completion Using Conditional Random
Fields (ICCV 2005)
– Conditional Random Fields for Object Recognition (NIPS 2004)
– Image Modeling using Tree Structured Conditional Random Fields
(IJCAI 2007)
– A Conditional Random Field Model for Video Super-resolution (ICPR
2006)
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other applications

• inference for motion segmentation (Toussaint, Willert, BMVC 2007)
A B

µ
I
→

v

Y t+1

V t+1V tV t+1V t

St St+1 St St+1

It It+1

µs→s′

µv→v′

µ
s
→

v

µ
v
→

s

Y t
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• outline

1) examples for inference & BP:
– HMMs
– MRFs

2) additional comments to BP:
– Junction Trees
– max-product
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Junction Trees

• so far all messages have beed defined over single variables
µC→i(Xi)
µi→C(Xi)

• loops can be resolved by defining larger variable groups (separators)
on which messages are defined
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Junction Trees – example
• example:

A B

C D

A B

C D

• joint variable B and C to a single “separator”

D

B,C

A

– mathematically: a variable substitution: rename the tuple (B,C) as a
single random variable
ψ1(A,B,C) = P (B|A) P (A) P (C|A)
ψ2(B,C,D) = P (D|B,C)
this still reprents the same old joint distribution P (A,B,C,D) – only
factored in a different way 23/30



Junction Trees – example

D

A B

C

E

...

• a variable can be contained in multiple separators – but only along a
running intersection
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Junction Tree Algorithm

• Algorithm to automatically find separators and coupling factors
(=junctions) to form a tree

• graph theoretical formulation:
– moralize a Bayes Net (= form the factor graph)
– triangulate the graph (= insert additional links/combine variables to
separators)
– generate tree of maximal cliques (maximal spanning tree algorithm)

• here: use Elimination Algorithm to find the Junction Tree
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Elimination Algorithm
P (x1, x6)

=
X
x2

X
x3

X
x4

X
x5

ψ(x1, x2) ψ(x3, x1) ψ(x2, x4) ψ(x3, x5) ψ(x2, x5, x6)

=
X
x2

X
x3

X
x4

ψ(x1, x2) ψ(x3, x1) ψ(x2, x4)
X
x5

ψ(x3, x5) ψ(x2, x5, x6)

=
X
x2

X
x3

X
x4

ψ(x1, x2) ψ(x3, x1) ψ(x2, x4) t1(x2, x3, x6)

=
X
x2

X
x3

ψ(x1, x2) ψ(x3, x1) t1(x2, x3, x6)
X
x4

ψ(x2, x4)

=
X
x2

X
x3

ψ(x1, x2) ψ(x3, x1) t1(x2, x3, x6) t2(x2)

=
X
x2

ψ(x1, x2) t2(x2)
X
x3

ψ(x3, x1) t1(x2, x3, x6)

=
X
x2

ψ(x1, x2) t2(x2) t3(x1, x2, x6)

= t4(x1, x6)
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Elimination→ Junction Tree
Elimination Algorithm:

• determine an elimination order

• “simulate” the iterative process of
– eliminating a variable
– adding a new temporary factor tk(. . . ) to the factor list

• keep track of the terms!∑
variable

terms(some vars︸ ︷︷ ︸
clique

) = tk(remaining vars︸ ︷︷ ︸
separator

)
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example
A

T

E

X D

L

S

B

– eliminate in order D,B, S, L,A, T,X,E
– eliminate in order E,... (not good)
– eliminate in order D,X,A, S,B,L, T,E

• on the Junction Tree, we can use BP (the special case factor-to-factor
message equations) to do exact inference.
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comments
• naming conventions

here other places

exact BP on trees sum-product algorithm,
message passing algorithm,
inward-outward

loopy BP BP

• finding max configurations of random variables:

argmax
x1:n

P (X1:n=x1:n)

– max-product algorithm: replace
∑

by max in the message equations!
– (numerical stability: transfer to log scale and replace

∏
by

∑
,

max-sum algorithm)

• read Bishop’s chapter 8 (course webpage)
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summary

• so far:
– Bayes Nets & Factor Graphs
– inference (Elimination, Belief Propagation)

• next big topic:
– learning!

30/30


