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e outline

1) examples for inference & BP:
— HMMs
— MRFs

2) additional comments to BP:
—Junction Trees

— max-product 1/30



Belief Propagation — recap

general message equations:

po—i(Xi) = Y vo(Xe) [[ mi—o(X
Xc\X; jEC,j#i
pimo(Xi) = J[  mp—i(X)
Dew(i),DAC
beliefs:

be(Xe) = vo(Xe) [[ pime(X3), bi(Xi) = [ mo—i(X

ieC Cev(i)

special case: pair-wise factors — variable-to-variable messages:

pj—i(X) ch (X5, X5) TT me—s(X5)
J

ki

special case: separators — factor-to-factor messages:

up—c(X Z Yp(XDp) H weE—p(XEnD) ,

Xp\X; E:E4C
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Belief Propagation — recap

e
O, »©
z
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¢ Naive Bayes:
P(X[Yip) o< P(X) T2y pa(X)
pi(X) == P(Yi=y; | X)
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Belief Propagation — recap

— messages represent (indep.) information from branches

— messages are the temporary terms ¢, (X) that arise when eliminating
(Elim.Alg.) a branch (— exactness on trees) 4/30



Hidden Markov Models

e usedin
— speech recognition
— molecular biology sequences
— linguistic sequences (e.g. part-of-speech tagging)
— multi-electrode spike-train analysis
— tracking objects through time

e ... motivate with data ...
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Hidden Markov Models

e HMM definition:
— a (temporal) sequence of random variables Xy, .., X1, each with the

same domain dom(X;)
—to each X, and observation RV associated Y;, each with same

domain dom(Y;)
— the joint distribution

T T
P(X07' 7XT3Y07- aYT HP Xt|Xt1 HP(}/t|Xt) .
t=1

t=0

e graphically:
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Properties of HMMs

e Markov property:
foralla <tandb>t
— X, conditionally independent from X, given X;
— Y, conditionally independent from Y}, given X;

— the future is independent of the past given the present

— note that conditioning on Y; does not yield any conditional
independences
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different inference problems in HMMs

P(zo.7 | yo.7) inferring hidden state given yo.r

!

x+ | yo.7) marginal of above

P(zt]yo.a), t > a prediction

(
(
P(z¢ | yo.) filtering
(
P(a,

| Y0:6), t < b smoothing

P(yo.7) likelihood calculation

Find sequence .. that maximizes P(xzo.r | yo.7) [Viterbi alignment]

8/30



filtering

AR
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smoothing
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prediction t
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t

denotes the extent of data
available
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Inference in HMMs

e 1) classical derivation
— good to know, typical notation found in the literature

e 2) derivation from Belief Propagation equations
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Inference in HMMs

e classical derivation
P(yo.r | @) Plxt)
P(yo.r)

_ P(yo.t | 2¢) P(yesr.r | 2¢) Pay)
a P(yor)
o P(yo:uxt) P(yt+1:T\$t)
B P(yo.r)

o) B(we)

= P = ()

Pl | yor) =

a(zt) = P(Yor, ve) = ¢(Yt) P(Yorr, ), d(xe) = Plyelze)
= ¢(yt) Z P(xy|ze1) a(ze)

Tt-1

Bai) = P(Ysprr |20) = > P(yrprr | wip1) Plai [20)
x+1

_ Z { Tiy1) yt+1)] P(ze41 [ 24)

pre 11/30



Inference in HMMs

e derivation from BP equations — variable-to-variable message:

]—>z z ch XMX H Mk—»g

k:k#i

e message in the HMM case

pi1—i () ZP To|wo1) pr2—i1(Te1) (241)

L1

peri—t(@) = D Pl@es|re) peva—e (1) o(es1)

T
b(zt) = pea—i(@e) d(@e) pre1—e(we)
belief = product of message from past, future, and cur. observation!
e compare to classical:
a(rt) = per—e(Te) ¢(2r) = ppa—e(w) = P(Your1, Tt)
B(xs) = pr1—¢(xt) = P(yerrr | 24)

(asymmetry w.r.t. [z, stems from asymmetry of the factors P(z¢[2-1))15/30



HMMs

e ... demo on binary data ..
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Markov Random Fields

e image denoising example:
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Markov Random Fields

assume every pixel is a binary (black/white) random variable

Let I ={0,..,W} x {0, .., H} be be the index set (heightxwidth)

we have binary random variables X, for all i € I representing the pixels
of the true image

we have binary randon variable Y; representing the observations
(camera snapshot)

assume neighboring pixels are coupled

P(ar,yr) o [ [ (s ;) - [T o v)

(i) icl

with couplings

vl = { 1 oY (i, i) = { € T=vy;

—o else 1—€¢ else
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Markov Random Fields

e as a factor graph
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Markov Random Fields

e image denoising is an inference problem
— for given camera image y; compute the most probable true image

argmax P(zr,yr)
T
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other applications

e google “conditional random field image”
— Multiscale Conditional Random Fields for Image Labeling (CVPR
2004)
— Scale-Invariant Contour Completion Using Conditional Random
Fields (ICCV 2005)
— Conditional Random Fields for Object Recognition (NIPS 2004)
— Image Modeling using Tree Structured Conditional Random Fields
(IJCAI 2007)
— A Conditional Random Field Model for Video Super-resolution (ICPR
2006)
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Original Hand-labeling Classifier mCRF confidence

. rhino/hippo

polar bear
water
STOW
vegetation
ground
sky
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road marking
road surface
building
street object

car




other applications

¢ inference for motion segmentation (Toussaint, Willert, BMVC 2007)
A B
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e outline

1) examples for inference & BP:
— HMMs
— MRFs

2) additional comments to BP:

—Junction Trees
— max-product
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Junction Trees

e so far all messages have beed defined over single variables
pe—i(Xi)
pi—c(Xi)

e |loops can be resolved by defining larger variable groups (separators)
on which messages are defined
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Junction Trees — example

9.@ G'Q

e example:

e joint variable B and C to a single “separator”

— mathematically: a variable substitution: rename the tuple (B, C) as a
single random variable

v1(A, B,C) = P(B|A) P(4) P(C|4)

Y»(B,C, D) = P(D|B,C)

this still reprents the same old joint distribution P(A, B, C, D) — only
factored in a different way 23/30



Junction Trees — example

D—®
®
O—®

e avariable can be contained in multiple separators — but only along a
running intersection
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Junction Tree Algorithm

¢ Algorithm to automatically find separators and coupling factors
(=junctions) to form a tree

e graph theoretical formulation:
— moralize a Bayes Net (= form the factor graph)
— triangulate the graph (= insert additional links/combine variables to
separators)
— generate tree of maximal cliques (maximal spanning tree algorithm)

e here: use Elimination Algorithm to find the Junction Tree
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Elimination Algorithm
P(a:l, xﬁ)

=D 3 D> Wl w2) Ylws,31) (w2, xa) @3, w5) P2, w5, T6)

2 T3 X4 Ts

=D 3> (@, w2) Plas, w1) (@2, wa) D bl(ws, w5) (@2, 5, T6)

r2 T3 T4 5

= Zzzlﬂ(wl,xz) Y(zs, x1) Y(x2,x4) t1 (T2, 3, T6)

r2 T3 T4

=D D W@y, @) d(s,21) (w2, 23,6) Y (w2, 2a)

2 T3 T4

= ZZwm,m) Y(x3, 21) t1 (22, T3, T6) L2(22)

= P(z1,32) ta(22) D (3, 71) t1 (22, 3, T6)
=D ¥(@1,x2) ta(w2) ta(ar, 22, 26)
= ta(w1,w6)

26/30



Elimination — Junction Tree

Elimination Algorithm:

e determine an elimination order

e “simulate” the iterative process of
— eliminating a variable
— adding a new temporary factor ¢, (... ) to the factor list

e keep track of the terms!

> terms(some vars) = t;(remaining vars)
——— —_——

variable clique separator
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example

®

— eliminate inorder D, B, S, L, A, T, X, E
— eliminate in order E.,... (not good)
— eliminate in order D, X, A, S, B, L, T, E

on the Junction Tree, we can use BP (the special case factor-to-factor
message equations) to do exact inference.
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comments

naming conventions
here other places

exact BP on trees | sum-product algorithm,
message passing algorithm,
inward-outward

loopy BP BP

finding max configurations of random variables:

argmax P(Xy., =21.,)
— max-product algorithm: replace > by max in the message equations!
— (numerical stability: transfer to log scale and replace [] by >,
max-sum algorithm)

read Bishop’s chapter 8 (course webpage) 20/30



summary

so far:
— Bayes Nets & Factor Graphs
— inference (Elimination, Belief Propagation)

next big topic:
— learning!
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