Introduction to Graphical Models lecture 4 - Inference in HMMs, MRFs; Junction Trees

Marc Toussaint

TU Berlin

- outline

1) examples for inference \& BP:

- HMMs
- MRFs

2) additional comments to BP:

- Junction Trees
- max-product

Belief Propagation - recap

- general message equations:

$$
\begin{aligned}
& \mu_{C \rightarrow i}\left(X_{i}\right)=\sum_{X_{C} \backslash X_{i}} \psi_{C}\left(X_{C}\right) \prod_{j \in C, j \neq i} \mu_{j \rightarrow C}\left(X_{j}\right) \\
& \mu_{i \rightarrow C}\left(X_{i}\right)=\prod_{D \in \nu(i), D \neq C} \mu_{D \rightarrow i}\left(X_{i}\right)
\end{aligned}
$$

- beliefs:

$$
b_{C}\left(X_{C}\right):=\psi_{C}\left(X_{C}\right) \prod_{i \in C} \mu_{i \rightarrow C}\left(X_{i}\right), \quad b_{i}\left(X_{i}\right):=\prod_{C \in \nu(i)} \mu_{C \rightarrow i}\left(X_{i}\right)
$$

- special case: pair-wise factors \rightarrow variable-to-variable messages:

$$
\mu_{j \rightarrow i}\left(X_{i}\right)=\sum_{X_{j}} \psi_{C}\left(X_{i}, X_{j}\right) \prod_{k: k \neq i} \mu_{k \rightarrow j}\left(X_{j}\right)
$$

- special case: separators \rightarrow factor-to-factor messages:

$$
\mu_{D \rightarrow C}\left(X_{i}\right)=\sum_{X_{D} \backslash X_{i}} \psi_{D}\left(X_{D}\right) \prod_{E: E \neq C} \mu_{E \rightarrow D}\left(X_{E \cap D}\right)
$$

Belief Propagation - recap

- Naive Bayes:
$P\left(X \mid Y_{1: n}\right) \propto P(X) \prod_{i=1}^{n} \mu_{i}(X)$
$\mu_{i}(X):=P\left(Y_{i}=y_{i} \mid X\right)$

Belief Propagation - recap

- Belief Propagation $b_{i}(X):=\prod_{C \in \nu(X)} \mu_{C \rightarrow X}(X)$
- messages represent (indep.) information from branches
- messages are the temporary terms $t_{k}(X)$ that arise when eliminating
(Elim.Alg.) a branch (\rightarrow exactness on trees)

Hidden Markov Models

- used in
- speech recognition
- molecular biology sequences
- linguistic sequences (e.g. part-of-speech tagging)
- multi-electrode spike-train analysis
- tracking objects through time
- ... motivate with data ...

Hidden Markov Models

- HMM definition:
- a (temporal) sequence of random variables $X_{0}, . ., X_{T}$, each with the same domain dom (X_{t})
- to each X_{t} and observation RV associated Y_{i}, each with same domain $\operatorname{dom}\left(Y_{t}\right)$
- the joint distribution

$$
P\left(X_{0}, . ., X_{T}, Y_{0}, . ., Y_{T}\right)=P\left(X_{0}\right) \cdot \prod_{t=1}^{T} P\left(X_{t} \mid X_{t-1}\right) \cdot \prod_{t=0}^{T} P\left(Y_{t} \mid X_{t}\right)
$$

- graphically:

Properties of HMMs

- Markov property: for all $a \leq t$ and $b>t$
- X_{a} conditionally independent from X_{b} given X_{t}
- Y_{a} conditionally independent from Y_{b} given X_{t}
- the future is independent of the past given the present
- note that conditioning on Y_{t} does not yield any conditional independences

different inference problems in HMMs

- $P\left(x_{0: T} \mid y_{0: T}\right)$ inferring hidden state given $y_{0: T}$
- $P\left(x_{t} \mid y_{0: T}\right)$ marginal of above
- $P\left(x_{t} \mid y_{0: t}\right)$ filtering
- $P\left(x_{t} \mid y_{0: a}\right), t>a$ prediction
- $P\left(x_{t} \mid y_{0: b}\right), t<b$ smoothing
- $P\left(y_{0: T}\right)$ likelihood calculation
- Find sequence $x_{0: T}^{*}$ that maximizes $P\left(x_{0: T} \mid y_{0: T}\right)$ [Viterbi alignment]

filtering

denotes the extent of data available

Inference in HMMs

- 1) classical derivation
- good to know, typical notation found in the literature
- 2) derivation from Belief Propagation equations

Inference in HMMs

- classical derivation

$$
\begin{aligned}
& \begin{aligned}
& P\left(x_{t} \mid y_{0: T}\right)=\frac{P\left(y_{0: T} \mid x_{t}\right) P\left(x_{t}\right)}{P\left(y_{0: T}\right)} \\
&=\frac{P\left(y_{0: t} \mid x_{t}\right) P\left(y_{t+1: T} \mid x_{t}\right) P\left(x_{t}\right)}{P\left(y_{0: T}\right)} \\
&=\frac{P\left(y_{0: t}, x_{t}\right) P\left(y_{t+1: T} \mid x_{t}\right)}{P\left(y_{0: T}\right)} \\
&=\frac{\alpha\left(x_{t}\right) \beta\left(x_{t}\right)}{P\left(y_{0: T}\right)}=: \gamma\left(x_{t}\right) \\
&=\phi\left(x_{t}\right)=P\left(y_{0: t}, x_{t}\right)=\phi\left(y_{t}\right) P\left(y_{0: t-1}, x_{t}\right), \quad \phi\left(x_{t}\right) \equiv P\left(y_{t} \mid x_{t}\right) \\
& P\left(x_{t} \mid x_{t-1}\right) \alpha\left(x_{t-1}\right) \\
& \beta\left(x_{t}\right)=P\left(y_{t+1: T} \mid x_{t}\right)=\sum_{x+1} P\left(y_{t+1: T} \mid x_{t+1}\right) P\left(x_{t+1} \mid x_{t}\right) \\
&=\sum_{x+1}\left[\beta\left(x_{t+1}\right) \phi\left(y_{t+1}\right)\right] P\left(x_{t+1} \mid x_{t}\right)
\end{aligned}
\end{aligned}
$$

Inference in HMMs

- derivation from BP equations - variable-to-variable message:

$$
\mu_{j \rightarrow i}\left(X_{i}\right)=\sum_{X_{j}} \psi_{C}\left(X_{i}, X_{j}\right) \prod_{k: k \neq i} \mu_{k \rightarrow j}\left(X_{j}\right)
$$

- message in the HMM case

$$
\begin{aligned}
\mu_{t-1 \rightarrow t}\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) \mu_{t-2 \rightarrow t-1}\left(x_{t-1}\right) \phi\left(x_{t-1}\right) \\
\mu_{t+1 \rightarrow t}\left(x_{t}\right) & =\sum_{x_{t+1}} P\left(x_{t+1} \mid x_{t}\right) \mu_{t+2 \rightarrow t+1}\left(x_{t+1}\right) \phi\left(x_{t+1}\right) \\
b\left(x_{t}\right) & =\mu_{t-1 \rightarrow t}\left(x_{t}\right) \phi\left(x_{t}\right) \mu_{t+1 \rightarrow t}\left(x_{t}\right)
\end{aligned}
$$

belief = product of message from past, future, and cur. observation!

- compare to classical:

$$
\begin{aligned}
\alpha\left(x_{t}\right) & \equiv \mu_{t-1 \rightarrow t}\left(x_{t}\right) \phi\left(x_{t}\right) \quad \Rightarrow \quad \mu_{t-1 \rightarrow t}\left(x_{t}\right) \equiv P\left(y_{0: t-1}, x_{t}\right) \\
\beta\left(x_{t}\right) & \equiv \mu_{t+1 \rightarrow t}\left(x_{t}\right) \equiv P\left(y_{t+1: T} \mid x_{t}\right)
\end{aligned}
$$

(asymmetry w.r.t. $\mid x_{t}$ stems from asymmetry of the factors $\left.P\left(x_{t} \mid x_{t-1}\right)\right)_{12 / 30}$

HMMs

- ... demo on binary data ...

$$
\begin{aligned}
& \text { Bayes' } \\
& \text { Theorem }
\end{aligned}
$$

Markov Random Fields

- assume every pixel is a binary (black/white) random variable Let $I=\{0, . ., W\} \times\{0, . ., H\}$ be be the index set (height \times width) we have binary random variables X_{i} for all $i \in I$ representing the pixels of the true image we have binary randon variable Y_{i} representing the observations (camera snapshot)
- assume neighboring pixels are coupled

$$
P\left(x_{I}, y_{I}\right) \propto \prod_{(i j)} \psi\left(x_{i}, x_{j}\right) \cdot \prod_{i \in I} \phi\left(x_{i}, y_{i}\right)
$$

with couplings

$$
\psi\left(x_{i}, x_{j}\right)=\left\{\begin{array}{cc}
\varrho & x_{i}=x_{j} \\
1-\varrho & \text { else }
\end{array} \phi\left(x_{i}, y_{i}\right)=\left\{\begin{array}{cc}
\epsilon & x_{i}=y_{i} \\
1-\epsilon & \text { else }
\end{array}\right.\right.
$$

Markov Random Fields

- as a factor graph

Markov Random Fields

- image denoising is an inference problem - for given camera image y_{I} compute the most probable true image

$$
\underset{x_{I}}{\operatorname{argmax}} P\left(x_{I}, y_{I}\right)
$$

other applications

- google "conditional random field image"
- Multiscale Conditional Random Fields for Image Labeling (CVPR 2004)
- Scale-Invariant Contour Completion Using Conditional Random

Fields (ICCV 2005)

- Conditional Random Fields for Object Recognition (NIPS 2004)
- Image Modeling using Tree Structured Conditional Random Fields (IJCAI 2007)
- A Conditional Random Field Model for Video Super-resolution (ICPR

2006)

other applications

- inference for motion segmentation (Toussaint, Willert, BMVC 2007)

A

B

- outline

1) examples for inference \& BP:

- HMMs
- MRFs

2) additional comments to BP:

- Junction Trees
- max-product

Junction Trees

- so far all messages have beed defined over single variables $\mu_{C \rightarrow i}\left(X_{i}\right)$
$\mu_{i \rightarrow C}\left(X_{i}\right)$
- loops can be resolved by defining larger variable groups (separators) on which messages are defined

Junction Trees - example

- example:

- joint variable B and C to a single "separator"

- mathematically: a variable substitution: rename the tuple (B, C) as a single random variable
$\psi_{1}(A, B, C)=P(B \mid A) P(A) P(C \mid A)$
$\psi_{2}(B, C, D)=P(D \mid B, C)$
this still reprents the same old joint distribution $P(A, B, C, D)$ - only factored in a different way

Junction Trees - example

- a variable can be contained in multiple separators - but only along a running intersection

Junction Tree Algorithm

- Algorithm to automatically find separators and coupling factors (=junctions) to form a tree
- graph theoretical formulation:
- moralize a Bayes Net (= form the factor graph)
- triangulate the graph (= insert additional links/combine variables to separators)
- generate tree of maximal cliques (maximal spanning tree algorithm)
- here: use Elimination Algorithm to find the Junction Tree

Elimination Algorithm

$$
\begin{aligned}
& P\left(x_{1}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) \psi\left(x_{2}, x_{4}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) t_{2}\left(x_{2}\right) \\
& =\sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) t_{2}\left(x_{2}\right) \sum_{x_{3}} \psi\left(x_{3}, x_{1}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \\
& =\sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) t_{2}\left(x_{2}\right) t_{3}\left(x_{1}, x_{2}, x_{6}\right) \\
& =t_{4}\left(x_{1}, x_{6}\right)
\end{aligned}
$$

Elimination \rightarrow Junction Tree

Elimination Algorithm:

- determine an elimination order
- "simulate" the iterative process of
- eliminating a variable
- adding a new temporary factor $t_{k}(\ldots)$ to the factor list
- keep track of the terms!

$$
\sum_{\text {variable }} \text { terms }(\underbrace{\text { some vars }}_{\text {clique }})=t_{k}(\underbrace{\text { remaining vars }}_{\text {separator }})
$$

example

- eliminate in order D, B, S, L, A, T, X, E
- eliminate in order E, \ldots (not good)
- eliminate in order D, X, A, S, B, L, T, E
- on the Junction Tree, we can use BP (the special case factor-to-factor message equations) to do exact inference.

comments

- naming conventions

here	other places
exact BP on trees	sum-product algorithm, message passing algorithm, inward-outward
loopy BP	BP

- finding max configurations of random variables:

$$
\underset{x_{1: n}}{\operatorname{argmax}} P\left(X_{1: n}=x_{1: n}\right)
$$

- max-product algorithm: replace \sum by max in the message equations!
- (numerical stability: transfer to log scale and replace Π by \sum, max-sum algorithm)
- read Bishop's chapter 8 (course webpage)

summary

- so far:
- Bayes Nets \& Factor Graphs
- inference (Elimination, Belief Propagation)
- next big topic:
- learning!

