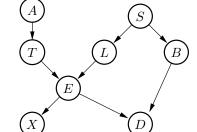


 X_1

 $P(x_1) P(x_2|x_1) P(x_3|x_1) P(x_4|x_2) P(x_5|x_3) P(x_6|x_2,x_5)$

 $\iff P(x_{1:6}) =$

problem: compute $P(x_1, x_6)$



 $\iff P(D, X, E, B, L, T, S, A) =$ P(D|E,B) P(X|E) P(E|T,L) P(B|S) P(L|S) P(T|A) P(S) P(A)

• A Bayesian network is a DAG that defines for each node X_i what the parents $\pi(i)$ such that

$$P(X_{1:n}) = \prod_{i=1}^{n} P(X_i | X_{\pi(i)})$$

notation: $X_{\pi(i)} = (X_a, ..., X_b)$ if $\pi(i) = (a, ..., b)$)

Bayes Net \rightarrow facor graph

... continued...

$$P(x_1, x_6)$$

$$= \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} P(x_1) P(x_2|x_1) P(x_3|x_1) P(x_4|x_2) P(x_5|x_3) P(x_6|x_2, x_5)$$

$$= P(x_1) \sum_{x_2} P(x_2|x_1) \sum_{x_3} P(x_3|x_1) \sum_{x_4} P(x_4|x_2) \sum_{x_5} P(x_5|x_3) P(x_6|x_2, x_5)$$

$$= P(x_1) \sum_{x_2} P(x_2|x_1) \sum_{x_3} P(x_3|x_1) \sum_{x_4} P(x_4|x_2) t_1(x_2, x_3, x_6)$$

$$= P(x_1) \sum_{x_2} P(x_2|x_1) \sum_{x_3} P(x_3|x_1) t_1(x_2, x_3, x_6) \sum_{x_4} P(x_4|x_2)$$

$$= P(x_1) \sum_{x_2} P(x_2|x_1) t_2(x_2) \sum_{x_3} P(x_3|x_1) t_1(x_2, x_3, x_6)$$

$$= P(x_1) \sum_{x_2} P(x_2|x_1) t_2(x_2) t_3(x_1, x_2, x_6)$$

$$= P(x_1) t_4(x_1, x_6)$$

ightarrow what matters is: on which variables depends each term

factor graphs

- mathematically: a factor graph is given by a
 - a set of random variables variables $X_1, ..., X_n$
- a set of cliques $C_1, ..., C_k$ (which are tuples of variables)
- for each clique a factor $\psi_i(X_{C_i})$ s.t.:

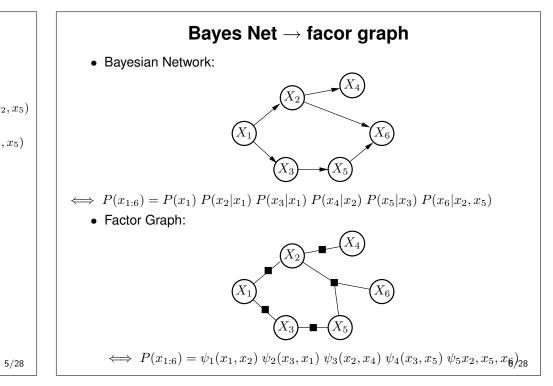
$$P(X_1, ..., X_n) = \prod_{i=1}^k \psi_i(X_{C_i})$$

(notation: $X_C = (X_a, ..., X_b)$ if C = (a, ..., b))

- graphically: a factor graph is a bi-partite graph with
 - factors (black boxes) connecting to
 - variables (circles)
- a factor graph is more general than a Bayes Net:
 - describes general couplings between variables in terms of common factors

- not only contidional probabilities

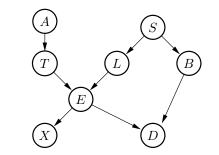
· easy to represent in a computer



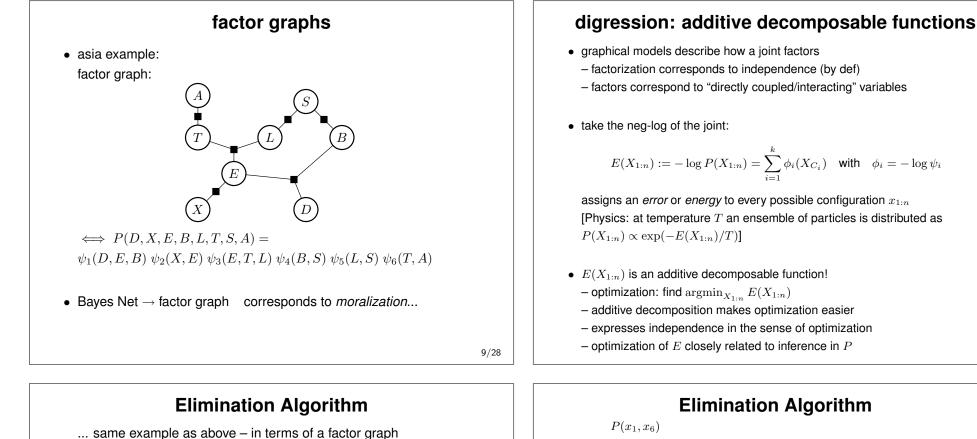
factor graphs

• asia example:

Bayes Net:



 $\iff P(D, X, E, B, L, T, S, A) =$ $P(D|E, B) \ P(X|E) \ P(E|T, L) \ P(B|S) \ P(L|S) \ P(T|A) \ P(S) \ P(A)$



X_1 X_2 X_4 X_6 X_6 X_5

 $\iff P(x_{1:6}) = \psi(x_1, x_2) \ \psi(x_3, x_1) \ \psi(x_2, x_4) \ \psi(x_3, x_5) \ \psi(x_2, x_5, x_6)$

problem: compute $P(x_1, x_6)$

 $= \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} \psi(x_1, x_2) \psi(x_3, x_1) \psi(x_2, x_4) \psi(x_3, x_5) \psi(x_2, x_5, x_6)$ $= \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi(x_1, x_2) \psi(x_3, x_1) \psi(x_2, x_4) \sum_{x_5} \psi(x_3, x_5) \psi(x_2, x_5, x_6)$ $= \sum_{x_2} \sum_{x_3} \sum_{x_4} \psi(x_1, x_2) \psi(x_3, x_1) \psi(x_2, x_4) t_1(x_2, x_3, x_6)$ $= \sum_{x_2} \sum_{x_3} \psi(x_1, x_2) \psi(x_3, x_1) t_1(x_2, x_3, x_6) \sum_{x_4} \psi(x_2, x_4)$ $= \sum_{x_2} \sum_{x_3} \psi(x_1, x_2) \psi(x_3, x_1) t_1(x_2, x_3, x_6) t_2(x_2)$ $= \sum_{x_2} \psi(x_1, x_2) t_2(x_2) \sum_{x_3} \psi(x_3, x_1) t_1(x_2, x_3, x_6)$ $= \sum_{x_2} \psi(x_1, x_2) t_2(x_2) t_3(x_1, x_2, x_6)$

11/28

we can automate this!

Elimination Algorithm	Elimination Algorithm
 eliminate_single_variable(F, i) 1: Input: list F of factors, variable id i 2: Output: list F of factors 3: find relevant subset f ⊂ F of factors over i: f = {C : i ∈ C} 4: define remaining clique Ct = all variables in f except i Ct = vars(f) \ {i} 5: compute temporary factor t(XCt) = ∑Xi ∏ψ∈f ψ 6: remove old factors f and append new temporary factor t to F 7: return F 	 pros: very simple, trivial to prove correct (does exactly what we'd do on paper) cons: computes only one marginal P(X_i) need to call it <i>n</i>-times to compute all marginals P(X₁),, P(X_n)
 elimination_algorithm(m, F, C_o) 1: Input: list F of factors, tuple C_o of output variables ids 2: Output: single factor m over variables X_{Co} 3: define all variables present in F: V = vars(F) 4: define variables to be eliminated: E = V \ C_o 5: for all i ∈ E: eliminate_single_variable(F, i) 6: for all remaining factors, compute the product m = ∏_{ψ∈F} ψ 	
7: return <i>m</i> 13/28	14/28

Belief propagation

- ... do somehow the same as elimination, but:
- more locally
- with other kinds of temporary factors, reusable for *all* marginals
- belief propagation:
 - compute messages

$$\mu_{C \to i}(X_i) = \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}(X_j)$$
$$\mu_{i \to C}(X_i) = \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}(X_i)$$

- from the messages, compute beliefs

$$b_C(X_C) := \psi_C(X_C) \prod_{i \in C} \mu_{i \to C}(X_i) , \quad b_i(X_i) := \prod_{C \in \nu(i)} \mu_{C \to i}(X_i)$$

- factor-to-variable messages $\mu_{C \rightarrow i}$
- variable-to-factor messages $\mu_{i \rightarrow C}$

15/28

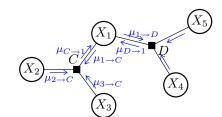
understanding BP

- 1) when can we resolve the recursive equations?
- 2) compare to Elimination Algorithm on a tree
- 3) trees, independent sources of information, & Naive Bayes!
- 4) local consistency as fixed point of message updates
- 5) the problem with loops, Bethe approximation

BP – resolving the recursion

• BP equations:

$$\mu_{C \to i}(X_i) = \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}(X_j) ,$$
$$\mu_{i \to C}(X_i) = \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}(X_i)$$



• the recursive dependencies in the BP equations can be resolved *iff the graph is a tree!*

17/28

19/28

BP – relation to Elimination Algorithm

- consider the factor graph (tree!) $P_{x_{1:6}}=\psi(x_1,x_2,x_3)\;\psi(x_1,x_4,x_5)$
- Elimination Algorithm: (pick elimination order from leaves to root)

$$P(x_1) = \left[\sum_{x_2, x_3} \psi(x_1, x_2, x_3)\right] \left[\sum_{x_4, x_5} \psi(x_1, x_4, x_5)\right]$$
$$P(x_1) = \frac{t_1(x_1)}{t_2} \frac{t_2(x_1)}{t_2}$$

• Belief Propagation:

$$b(x_1) = \mu_{C \to 1}(x_1) \ \mu_{D \to 1}(x_1)$$
$$\mu_{C \to 1} = \sum_{x_2, x_3} \psi(x_1, x_2, x_3)$$
$$\mu_{D \to 1} = \sum_{x_4, x_5} \psi(x_1, x_4, x_5)$$

- messages correspond to temporal factors in Elimination Alg!
 ⇒ the computed belief is equal to the marginal from the Elimination Algorithm
 - \Rightarrow when we compute *all* messages on a tree, we can return *all* marginals!
- proof of correctness of BP on trees

BP on trees & Naive Bayes

- what's so special about trees?
- we can resolve recursive BP equations, and:
- the branches of each node in a tree contain independent information
- recall Naive Bayes:

- one hidden variable, many conditionally independent evidences

- posterior: $P(x|y_{1:n}) \propto P(x) \prod_{i=1}^{n} \mu_i(x)$ with $\mu_i(x) := P(Y_i = y_i \mid x)$
- multiplying distributions \leftrightarrow fusing (independent!) information!
- ⇒ every node in a tree is like Naive Bayes, with each branch contributing independent information!
 - the (posterior) belief at a node is the product of all incoming messages! $(b_i(X_i) := \prod_{C \in \nu(i)} \mu_{C \to i}(X_i))$

BP update equations

- what if the model is not a tree? cannot resolve the recursions...!?
- use BP equations as update equations:
- initialize all messages as one: $\mu_{C \rightarrow i} = 1, \ \mu_{i \rightarrow C} = 1$
- update messages

$$\begin{split} \mu^{\text{new}}_{C \to i}(X_i) &= \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu^{\text{old}}_{j \to C}(X_j) ,\\ \mu^{\text{new}}_{i \to C}(X_i) &= \prod_{D \in \nu(i), D \neq C} \mu^{\text{old}}_{D \to i}(X_i) \end{split}$$

- compute current beliefs

$$\phi_C(X_C) := \psi_C(X_C) \prod_{i \in C} \mu_{i \to C}(X_i) , \quad b_i(X_i) := \prod_{C \in \nu(i)} \mu_{C \to i}(X_i)$$

• alternative equations:

$$\begin{split} \mu_{C \to i}^{\text{new}}(X_i) &= \frac{1}{\mu_{i \to C}^{\text{old}}(X_i)} \sum_{X_C \setminus X_i} b_C^{\text{old}}(X_C) \\ \mu_{i \to C}^{\text{new}}(X_i) &= \frac{1}{\mu_{C \to i}^{\text{old}}(X_i)} b_i^{\text{old}}(X_i) \end{split}$$

BP & marginal consistency as fixed point

• definition of marginal consistency: when two cliques *C* and *D* and share a variable *X_i*, then their marginal beliefs should coincide,

$$\sum_{X_C \setminus X_i} b(X_C) = \sum_{X_D \setminus X_i} b(X_D) = b(X_i)$$
(1)

Note, consistency also implies

- $b(X_i) = \mu_{C \to i}(X_i) \ \mu_{i \to C}(X_i)$
- marginal consistency is a fixed point of the BP updates!
 (if (1) holds, the BP update do not change the messages)
 trivialy to see with the alternative update equations

$$\begin{split} \mu^{\text{new}}_{C \to i}(X_i) &= \frac{1}{\mu^{\text{old}}_{i \to C}(X_i)} \sum_{X_C \setminus X_i} b^{\text{old}}_C(X_C) \\ \mu^{\text{new}}_{i \to C}(X_i) &= \frac{1}{\mu^{\text{old}}_{C \to i}(X_i)} \ b^{\text{old}}_i(X_i) \end{split}$$

21/28

BP & the problem with loops

[no fully rigorous treatement in this lecture]

- problem on an intuitive level:
 - loops \Rightarrow this is no Naive Bayes anymore!
- branches of a node to not represent independent information anymore!
- BP is multiplying (=fusion) messages from dependent sources of information
- echo effects

$\Rightarrow \text{can diverge}$

 \Rightarrow typically converges, but to a perturbed results

(e.g., positiv feedback \rightarrow over confident posteriors)

BP – summary so far

- 1) BP (with recursive computation of messages) leads to exact inference on trees (↔ elimination algorithm)
- 2) marginal consistency is a fixed point of the update equations
 this statement is true also non-trees! (loopy graphs)

- on trees, the parallel update of messages will converge to the true messages

- on non-trees, when it converges, then to a state of marginal consistency

• apply BP on loopy graphs?

22/28

BP & the problem with loops

- there exists a theory on what loopy BP converges to Bethe approximation, (Yedidia, Freeman, & Weiss, 2001)
- we shouldn't be overly disappointed:
 - if BP was exact on loopy graphs we could efficiently solve NP hard problems...
 - loopy BP is a very interesting approximation to solving an NP hard problem
 - is hence also applied in context of combinatorial optimization (e.g., SAT problems)
- ways to reduce (not fully resolve!) the problems with loops:
 - Generalized BP
 - loop corrections
 - ongoing research

BP – wrapup

- BP very powerful inference method
 - local computations, local integration of messages (Naive Bayes)
- very concrete idea/model of information processing on networks
- exact on trees
- different versions

– recursive computation of exact messages (possible only on trees) \rightarrow exact inference

– initialize all messages as $\mathbf{1},$ then update them iteratively

- parallel update (recompute factor-to-variable, then variable-to-factor messages)

- sequential update (recompute messages in some order)
- further reading
 - lecture notes

http://user.cs.tu-berlin.de/~mtoussai/notes/index.html

- the references therein!

25/28

27/28

BP & important special cases

• general BP equations:

$$\mu_{C \to i}(X_i) = \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}(X_j)$$
$$\mu_{i \to C}(X_i) = \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}(X_i)$$

• *special case* each variable X_i is contained in only two cliques we can define *clique-to-clique* messages $\mu_{D\to C}(X_i) := \mu_{i\to C}(X_i)$ where $i = C \cap D$ is unique

$$\mu_{D \to C}(X_i) = \sum_{X_D \setminus X_i} \psi_D(X_D) \prod_{E: E \neq C} \mu_{E \to D}(X_{E \cap D})$$

- also relevant:
- these are the inference equations on a "Junction Tree" (role of variables is replaced by separators)

BP & important special cases

• general BP equations:

$$\mu_{C \to i}(X_i) = \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}(X_j) ,$$
$$\mu_{i \to C}(X_i) = \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}(X_i)$$

• special case pair-wise factors: each clique C is a pair $C = (X_i, X_j)$ we can define variable-to-variable messages $\mu_{j \to i}(X_i) := \mu_{C \to i}(X_i)$ where $C = (X_i, X_j)$ is unique

$$\mu_{j \to i}(X_i) = \sum_{X_j} \psi_C(X_i, X_j) \prod_{k: k \neq i} \mu_{k \to j}(X_j) ,$$

- is an important special case
 - Hidden Markov Model
 - Boltzmann machine (model of a neural network)

26/28

Summary

• factor graphs:

- simply represent the factors in the joint, and which variables they depend on

- elimination algorithm:
 - summing over a variable produces a new temporary factor
 - iteratively: summation, augment the list with the new factor, take the old factors out of the list
- Belief Propagation (aka Message Passing)
 - generic inference method
 - exact on trees (equivalent to elimination algorithm)
 - approximate on loops
 - special case for pair-wise coupling (e.g., HMMs, many more)