Introduction to Graphical Models
lecture 3 - Elimination Algorithm & Belief Propagation

Marc Toussaint
TU Berlin

— factor graphs
— Elilmination Algorithm
— Belief Propagation & special cases

1/28

last time’s summary

e today:
—what is a Bayes Net
— what is inference good for
— usage of inference software

e nexttime:
— if you had to program such an inference software
— algorithms for inference
— factor graphs, elimination, Belief Propagation

2/28

recap: Bayesian Networks

e Bayesian Network: graph|cal notation of conditional (in)dependencies

/@

«— P(D,X,E,B,L,T, S, A) =
P(D|E, B) P(X|E) P(E|T, L) P(B|S) P(L|S) P(T|A) P(S) P(A)

e A Bayesian network is a DAG that defines for each node X; what the parents
m(¢) such that

P(X1.n) ﬁPX | X s
=1

(notation: Xy = (Xa, .., Xp) if 7(i) = (a, .., b)) 3/28

Bayes Net — facor graph

o for the computations, what matters are the factors the joint is build of:

Example:

@O
() (X5
() —~(X)
< P(x14) =

P(x1) P(z2|x1) P(as|zr) P(xg|ze) P(xzs|zs) P(ze|xe, x5)

problem: compute P(z1,xg)

4/28

Bayes Net — facor graph
... continued...

P(l‘l 33'6)

= ZZZZP z1) P(z2|z1) P(xs|z1) P(za|z2) P(as|zs) P(zs|z2,xs5)

r2 T3 T4 s

= P(x1 ZP z2|z1) ZP x3|x1) ZP Ta|T2) ZP zs5|z3) P(we|T2,x5)
P(x, ZP T2|21) ZP z3|71) ZP ralx2) U (22,23, T6)

.’131 E P.’I}2|:L’1 E P.’]Z5|l’1 tl .’IZQ,.’E3,:E6 E P$4‘.’E2
z2 z3 T4

= P(z1) Y P(xa|a1) t2(22) > Plas|r1) t1(x2, z3, 76)

T x3

= P(21) Y P(x2|an1) t2(22) ts(z1, 22, 76)

2

= P(:L'l) t4($1,5136)

— what matters is: on which variables depends each term 5/28

Bayes Net — facor graph

< P(x1:6) = P(Z’l) P(I2|$1) P(Ig‘lﬁl) P(CC4|1’2) P(‘Z’5‘I3) P(I6|I’2,I5)

e Factor Graph:
O
) (%)

e Bayesian Network:

= P(r16) = ¥1(21, 22) P23, 1) VY3(22, 24) Ya(w3, 75) 522, 5, Tg)sg

factor graphs

mathematically: a factor graph is given by a

— a set of random variables variables X3, .., X,

—a set of cliques C1, ..,C, (which are tuples of variables)
— for each clique a factor ¥;(X¢;) s.t.:

P(X1,., X sz Xo;)

(notation: X¢ = (X, .., Xp) if C = (a,..,b))

graphically: a factor graph is a bi-partite graph with
— factors (black boxes) connecting to
— variables (circles)

a factor graph is more general than a Bayes Net:
— describes general couplings between variables in terms of common factors

— not only contidional probabilities

easy to represent in a computer 728

factor graphs

0 o

@e (®
® ®

<« P(D,X,E,B,L,T,S,A) =
P(D|E, B) P(X|E) P(E|T, L) P(B|S) P(L|S) P(T|A) P(S) P(A)

e asia example:
Bayes Net:

8/28

factor graphs

e asia example:
factor graph:

<~ PD,X,E,B,L,T,S,A) =
wl(D7EaB) wQ(Xa E) ’(/}3(EaTa L) ¢4(375) ¢5(L,S) wG(Ta A)

e Bayes Net — factor graph corresponds to moralization...

9/28

digression: additive decomposable functions

e graphical models describe how a joint factors
— factorization corresponds to independence (by def)
— factors correspond to “directly coupled/interacting” variables

o take the neg-log of the joint:

k
E(X14) = —log P(X1m) = ¥ ¢i(Xc;) with ¢ = —log
i=1
assigns an error or energy to every possible configuration .,
[Physics: at temperature T' an ensemble of particles is distributed as
P(Xi:5) o< exp(—E(X1:n)/T)]

e FE(Xi.n) is an additive decomposable function!
— optimization: find argminy, =~ E(X1:n)
— additive decomposition makes optimization easier
— expresses independence in the sense of optimization
— optimization of FE closely related to inference in P 10/28

Elimination Algorithm

... same example as above — in terms of a factor graph

e Factor Graph:

<= P(z1:6) = (21, 22) Y(x3,21) (22, 24) V(23, 25) (22, T35, T6)

problem: compute P(z1,xg)

11/28

Elimination Algorithm
P(a:l, xﬁ)

= ZZZZZ&(M#&) Y(zs, x1) Y(x2, x4) P(23, T5) Y (T2, X5, T6)

2 T3 X4 Ts

=D 3> (@, w2) Plas, w1) (@2, wa) D bl(ws, w5) (@2, 5, T6)

r2 T3 T4 5

= Zzzw(xth) Y(zs, x1) Y(x2,x4) t1 (T2, 3, T6)

r2 T3 T4

=D D W@y, @) d(s,21) (w2, 23,6) Y (w2, 2a)

= iiw(;pl,m) W(xs,21) t1 (w2, T3, T6) t:(xg)
- izp::rl,xg) ta(w2) Y 1(ws, x1) t1 (w2, 73, 26)
— iz/)(xl,xz) to(z2) t;(:m,wz,xﬁ)

= t:(:chxﬁ)

e we can automate this!
12/28

Elimination Algorithm

e climinate_single variable(F),i)

1: Input: list F' of factors, variable id ¢

2: Output: list F of factors

3: find relevant subset f C F of factors overi: f={C:ie C}

4: define remaining clique C; = all variables in f except i C; = vars(f) \ {i}
5: compute temporary factor t(Xc,) = 3", [Iyes ¥

6: remove old factors f and append new temporary factor ¢t to F’

7: return F

e elimination_algorithm(m, F,C,)
1: Input: list F' of factors, tuple C, of output variables ids
Output: single factor m over variables X¢,
define all variables presentin F: V = vars(F')
define variables to be eliminated: £ =V \ C,
foralli € E: eliminate_single variable(F), i)
for all remaining factors, compute the product m = HweF P
return m 13/28

N ahrk e

Elimination Algorithm

e pros:
— very simple, trivial to prove correct
(does exactly what we’d do on paper)

e CONS:
— computes only one marginal P(X;)
— need to call it n-times to compute all marginals P(X3),.., P(X,)

14/28

Belief propagation

.. do somehow the same as elimination, but:
— more locally
— with other kinds of temporary factors, reusable for all marginals

e belief propagation:
— compute messages

pe—i(Xi) = > ve(Xe)] mimc(X))

X\ X, JjeC,j#i
pic(Xi) = H o —i(Xi)
Dew(i),D#£C

— from the messages, compute beliefs

be(Xe) :=ve(Xe) H ti—c (X)), bi(Xi) H po—i(X

ieC Cev(i)

— factor-to-variable messages pc—.;

— variable-to-factor messages yi;—.c 15/28

understanding BP

1) when can we resolve the recursive equations?

2) compare to Elimination Algorithm on a tree

3) trees, independent sources of information, & Naive Bayes!
4) local consistency as fixed point of message updates

5) the problem with loops, Bethe approximation

16/28

BP - resolving the recursion

e BP equations:

pe—i(Xi) = Y ve(Xe) [] mi—c(Xi),

Xo\X; jeCij#i
ti—c(Xi) = H pp—i(X:)
Dew(i),D#£C

¢ the recursive dependencies in the BP equations can be resolved
iff the graph is a tree!

17/28

BP - relation to Elimination Algorithm
consider the factor graph (tree!) P,, ., = ¥(z1, z2, z3) ¥ (21, T4, T5)
Elimination Algorithm: (pick elimination order from leaves to root)

P(z1) = [Z 1/)(391,3527@3)] [Z ¢(I1,$47$5)}

x2,T3 T4,T5

P(z1) = t1(21) ta(z1)
Belief Propagation:

b(z1) = pe—1(21) po—1(z1)
o1 = Z (w1, 2, T3)

2,73

UD—1 = Z 1/](1'171'471‘5)

T4,T5

messages correspond to temporal factors in Elimination Alg!

= the computed belief is equal to the marginal from the Elimination Algorithm

= when we compute all messages on a tree, we can return all marginals!

proof of correctness of BP on trees 18/28

BP on trees & Naive Bayes

e what’s so special about trees?
— we can resolve recursive BP equations, and:
— the branches of each node in a tree contain independent information

¢ recall Naive Bayes:

W G - W — P(X,Y1.,) = P(X) [Ii-, P(Y;|X)

— one hidden variable, many conditionally independent evidences
— posterior: P(z|y1.,) < P(z) [Ti—, pi(z) with p;(x) = P(Yi=y;|2)
— multiplying distributions < fusing (independent!) information!

= every node in a tree is like Naive Bayes, with each branch contributing
independent information!
— the (posterior) belief at a node is the product of all incoming

messages! (b;(X;) := HC@(Z-) pe—i(Xi)) 10/28

BP update equations

what if the model is not a tree? cannot resolve the recursions...!?

use BP equations as update equations:
— initialize all messages asone: pc—: =1, pinc =1
— update messages

uet (X)) = Z Yo (Xe) 130 (X5)
Xc\X; JEC,j#i

WMoy = [T sl
Dev(i),D#C

— compute current beliefs
bo(Xo) i=vo(Xo) [[mime(Xs), bi(Xe):= [ne—i(X)
ieC Cev(i)
alternative equations:

1
Nncelz(Xz) = 00X Z b%l'd(XC)
Hel o (Xi) XX,

1
W0 (X)) = —g— B9(X0)

Id)
/’LOCV—W; (Xl) 20/28

BP & marginal consistency as fixed point

definition of marginal consistency:
when two cliques C and D and share a variable X;, then their marginal
beliefs should coincide,
Y b(Xe)= > b(Xp) =b(X:) (1)
Xco\X; Xp\X;

Note, consistency also implies

b(Xs) = po—i(Xs) pimo(Xy)

marginal consistency is a fixed point of the BP updates!
(if (1) holds, the BP update do not change the messages)
— trivialy to see with the alternative update equations
1
Himo\ i) ¥ \x,
1

new old
e (Xi) = —g—= b7 (X4)
o) pd (X)) 21/28

BP — summary so far

e 1) BP (with recursive computation of messages) leads to exact
inference on trees (— elimination algorithm)

e 2) marginal consistency is a fixed point of the update equations
— this statement is true also non-trees! (loopy graphs)
— on trees, the parallel update of messages will converge to the true
messages
— on non-trees, when it converges, then to a state of marginal
consistency

e apply BP on loopy graphs?

22/28

BP & the problem with loops
[no fully rigorous treatement in this lecture]

e problem on an intuitive level:
— loops = this is no Naive Bayes anymore!
— branches of a node to not represent independent information
anymore!
— BP is multiplying (=fusion) messages from dependent sources of
information
— echo effects

= can diverge
= typically converges, but to a perturbed results

(e.g., positiv feedback — over confident posteriors)

23/28

BP & the problem with loops

¢ there exists a theory on what loopy BP converges to
Bethe approximation, (Yedidia, Freeman, & Weiss, 2001)

e we shouldn’t be overly disappointed:
— if BP was exact on loopy graphs we could efficiently solve NP hard
problems...
— loopy BP is a very interesting approximation to solving an NP hard
problem
—is hence also applied in context of combinatorial optimization (e.g.,
SAT problems)

e ways to reduce (not fully resolve!) the problems with loops:
— Generalized BP
— loop corrections

— ongoing research
24/28

BP — wrapup

BP very powerful inference method

— local computations, local integration of messages (Naive Bayes)
— very concrete idea/model of information processing on networks
— exact on trees

different versions

— recursive computation of exact messages (possible only on trees) — exact
inference

— initialize all messages as 1, then update them iteratively

— parallel update (recompute factor-to-variable, then variable-to-factor
messages)

— sequential update (recompute messages in some order)

further reading
— lecture notes
http://user.cs.tu-berlin.de/~mtoussai/notes/index.html
- in!
the references therein! 25)28

http://user.cs.tu-berlin.de/~mtoussai/notes/index.html

BP & important special cases

e general BP equations:

po—i(Xi)= > ve(Xe) [[mi—c(X;)

Xo\X; JeC,j#i
pime(Xi) = I[mo—i(X)
Dev(i),D#AC

e special case pair-wise factors: each clique C is a pair C = (X;, X)
we can define variable-to-variable messages 11;_.;(X;) = pc—i(X;)
where C = (X;, X;) is unique

Mj—n z ch XuX H Mk—>7 ’

ik

¢ is an important special case
— Hidden Markov Model
— Boltzmann machine (model of a neural network) 26/28

BP & important special cases

e general BP equations:

po—i(X) = Y voXo) [mi-c(X))

X\ X JEC,j#i

IJLZ'*)C(XZ') = H ,UDHZ'(Xi)
Dev(i),D#C

e special case each variable X; is contained in only two cliques
we can define clique-to-clique messages up—_.c(X;) := pi—c(X;)
where i = C'N D is unique

Up—c(X Z Yp(Xp) H we—p(Xenp) ,
Xp\X; E:E£C

e also relevant:
— these are the inference equations on a “Junction Tree
(role of variables is replaced by separators) 27/28

Summary

o factor graphs:
— simply represent the factors in the joint, and which variables they
depend on

e elimination algorithm:
— summing over a variable produces a new temporary factor
— iteratively: summation, augment the list with the new factor, take the
old factors out of the list

¢ Belief Propagation (aka Message Passing)
— generic inference method
— exact on trees (equivalent to elimination algorithm)
— approximate on loops
— special case for pair-wise coupling (e.g., HMMs, many more)
28/28

