Introduction to Graphical Models
 lecture 3 - Elimination Algorithm \& Belief Propagation

Marc Toussaint
TU Berlin

- factor graphs
- Elilmination Algorithm
- Belief Propagation \& special cases

last time's summary

- today:
- what is a Bayes Net
- what is inference good for
- usage of inference software
- next time:
- if you had to program such an inference software
- algorithms for inference
- factor graphs, elimination, Belief Propagation

recap: Bayesian Networks

- Bayesian Network: graphical notation of conditional (in)dependencies

$\Longleftrightarrow P(D, X, E, B, L, T, S, A)=$
$P(D \mid E, B) P(X \mid E) P(E \mid T, L) P(B \mid S) P(L \mid S) P(T \mid A) P(S) P(A)$
- A Bayesian network is a DAG that defines for each node X_{i} what the parents $\pi(i)$ such that

$$
P\left(X_{1: n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{\pi(i)}\right)
$$

(notation: $X_{\pi(i)}=\left(X_{a}, . ., X_{b}\right)$ if $\left.\pi(i)=(a, . ., b)\right)$

Bayes Net \rightarrow facor graph

- for the computations, what matters are the factors the joint is build of:

Example:

$\Longleftrightarrow P\left(x_{1: 6}\right)=$
$P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{2}\right) P\left(x_{5} \mid x_{3}\right) P\left(x_{6} \mid x_{2}, x_{5}\right)$
problem: compute $P\left(x_{1}, x_{6}\right)$

Bayes Net \rightarrow facor graph

... continued...

$$
\begin{aligned}
& P\left(x_{1}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{2}\right) P\left(x_{5} \mid x_{3}\right) P\left(x_{6} \mid x_{2}, x_{5}\right) \\
& =P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} P\left(x_{5} \mid x_{3}\right) P\left(x_{6} \mid x_{2}, x_{5}\right) \\
& =P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \\
& =P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2}\right) \\
& =P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) t_{2}\left(x_{2}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \\
& =P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) t_{2}\left(x_{2}\right) t_{3}\left(x_{1}, x_{2}, x_{6}\right) \\
& =P\left(x_{1}\right) t_{4}\left(x_{1}, x_{6}\right)
\end{aligned}
$$

Bayes Net \rightarrow facor graph

- Bayesian Network:

$\Longleftrightarrow P\left(x_{1: 6}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}\right) P\left(x_{4} \mid x_{2}\right) P\left(x_{5} \mid x_{3}\right) P\left(x_{6} \mid x_{2}, x_{5}\right)$
- Factor Graph:

$$
\left.\Longleftrightarrow P\left(x_{1: 6}\right)=\psi_{1}\left(x_{1}, x_{2}\right) \psi_{2}\left(x_{3}, x_{1}\right) \psi_{3}\left(x_{2}, x_{4}\right) \psi_{4}\left(x_{3}, x_{5}\right) \psi_{5} x_{2}, x_{5}, x_{母}\right)_{28}
$$

factor graphs

- mathematically: a factor graph is given by a
- a set of random variables variables $X_{1}, . ., X_{n}$
- a set of cliques $C_{1}, . ., C_{k}$ (which are tuples of variables)
- for each clique a factor $\psi_{i}\left(X_{C_{i}}\right)$ s.t.:

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{i=1}^{k} \psi_{i}\left(X_{C_{i}}\right)
$$

(notation: $X_{C}=\left(X_{a}, . ., X_{b}\right)$ if $C=(a, . ., b)$)

- graphically: a factor graph is a bi-partite graph with
- factors (black boxes) connecting to
- variables (circles)
- a factor graph is more general than a Bayes Net:
- describes general couplings between variables in terms of common factors
- not only contidional probabilities
- easy to represent in a computer

factor graphs

- asia example:

Bayes Net:

$\Longleftrightarrow P(D, X, E, B, L, T, S, A)=$
$P(D \mid E, B) P(X \mid E) P(E \mid T, L) P(B \mid S) P(L \mid S) P(T \mid A) P(S) P(A)$

factor graphs

- asia example: factor graph:

$\Longleftrightarrow P(D, X, E, B, L, T, S, A)=$
$\psi_{1}(D, E, B) \psi_{2}(X, E) \psi_{3}(E, T, L) \psi_{4}(B, S) \psi_{5}(L, S) \psi_{6}(T, A)$
- Bayes Net \rightarrow factor graph corresponds to moralization...

digression: additive decomposable functions

- graphical models describe how a joint factors
- factorization corresponds to independence (by def)
- factors correspond to "directly coupled/interacting" variables
- take the neg-log of the joint:

$$
E\left(X_{1: n}\right):=-\log P\left(X_{1: n}\right)=\sum_{i=1}^{k} \phi_{i}\left(X_{C_{i}}\right) \quad \text { with } \quad \phi_{i}=-\log \psi_{i}
$$

assigns an error or energy to every possible configuration $x_{1: n}$
[Physics: at temperature T an ensemble of particles is distributed as
$\left.P\left(X_{1: n}\right) \propto \exp \left(-E\left(X_{1: n}\right) / T\right)\right]$

- $E\left(X_{1: n}\right)$ is an additive decomposable function!
- optimization: find $\operatorname{argmin}_{X_{1: n}} E\left(X_{1: n}\right)$
- additive decomposition makes optimization easier
- expresses independence in the sense of optimization
- optimization of E closely related to inference in P

Elimination Algorithm

... same example as above - in terms of a factor graph

- Factor Graph:

$\Longleftrightarrow P\left(x_{1: 6}\right)=\psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right)$
problem: compute $P\left(x_{1}, x_{6}\right)$

Elimination Algorithm

$$
\begin{aligned}
& P\left(x_{1}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \sum_{x_{5}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) \psi\left(x_{2}, x_{4}\right) \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) \psi\left(x_{2}, x_{4}\right) \sum_{x_{5}} \psi\left(x_{3}, x_{5}\right) \psi\left(x_{2}, x_{5}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \sum_{x_{4}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) \psi\left(x_{2}, x_{4}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \sum_{x_{4}} \psi\left(x_{2}, x_{4}\right) \\
& =\sum_{x_{2}} \sum_{x_{3}} \psi\left(x_{1}, x_{2}\right) \psi\left(x_{3}, x_{1}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) t_{2}\left(x_{2}\right) \\
& =\sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) t_{2}\left(x_{2}\right) \sum_{x_{3}} \psi\left(x_{3}, x_{1}\right) t_{1}\left(x_{2}, x_{3}, x_{6}\right) \\
& =\sum_{x_{2}} \psi\left(x_{1}, x_{2}\right) t_{2}\left(x_{2}\right) t_{3}\left(x_{1}, x_{2}, x_{6}\right) \\
& =t_{4}\left(x_{1}, x_{6}\right)
\end{aligned}
$$

- we can automate this!

Elimination Algorithm

- eliminate_single_variable (F, i)

1: Input: list F of factors, variable id i
2: Output: list F of factors
3: find relevant subset $f \subset F$ of factors over i : $f=\{C: i \in C\}$
4: define remaining clique $C_{t}=$ all variables in f except $i C_{t}=\operatorname{vars}(f) \backslash\{i\}$
5: compute temporary factor $t\left(X_{C_{t}}\right)=\sum_{X_{i}} \prod_{\psi \in f} \psi$
6: remove old factors f and append new temporary factor t to F
7: return F

- elimination_algorithm $\left(m, F, C_{o}\right)$

1: Input: list F of factors, tuple C_{o} of output variables ids
2: Output: single factor m over variables $X_{C_{o}}$
3: define all variables present in $F: V=\operatorname{vars}(F)$
4: define variables to be eliminated: $E=V \backslash C_{o}$
5: for all $i \in E$: eliminate_single_variable (F, i)
6: for all remaining factors, compute the product $m=\prod_{\psi \in F} \psi$
7: return m

Elimination Algorithm

- pros:
- very simple, trivial to prove correct
(does exactly what we'd do on paper)
- Cons:
- computes only one marginal $P\left(X_{i}\right)$
- need to call it n-times to compute all marginals $P\left(X_{1}\right), . ., P\left(X_{n}\right)$

Belief propagation

- ... do somehow the same as elimination, but:
- more locally
- with other kinds of temporary factors, reusable for all marginals
- belief propagation:
- compute messages

$$
\begin{aligned}
& \mu_{C \rightarrow i}\left(X_{i}\right)=\sum_{X_{C} \backslash X_{i}} \psi_{C}\left(X_{C}\right) \prod_{j \in C, j \neq i} \mu_{j \rightarrow C}\left(X_{j}\right) \\
& \mu_{i \rightarrow C}\left(X_{i}\right)=\prod_{D \in \nu(i), D \neq C} \mu_{D \rightarrow i}\left(X_{i}\right)
\end{aligned}
$$

- from the messages, compute beliefs

$$
b_{C}\left(X_{C}\right):=\psi_{C}\left(X_{C}\right) \prod_{i \in C} \mu_{i \rightarrow C}\left(X_{i}\right), \quad b_{i}\left(X_{i}\right):=\prod_{C \in \nu(i)} \mu_{C \rightarrow i}\left(X_{i}\right)
$$

- factor-to-variable messages $\mu_{C \rightarrow i}$
- variable-to-factor messages $\mu_{i \rightarrow C}$

understanding BP

1) when can we resolve the recursive equations?
2) compare to Elimination Algorithm on a tree
3) trees, independent sources of information, \& Naive Bayes!
4) local consistency as fixed point of message updates
5) the problem with loops, Bethe approximation

$B P$ - resolving the recursion

- BP equations:

$$
\begin{aligned}
& \mu_{C \rightarrow i}\left(X_{i}\right)=\sum_{X_{C} \backslash X_{i}} \psi_{C}\left(X_{C}\right) \prod_{j \in C, j \neq i} \mu_{j \rightarrow C}\left(X_{j}\right) \\
& \mu_{i \rightarrow C}\left(X_{i}\right)=\prod_{D \in \nu(i), D \neq C} \mu_{D \rightarrow i}\left(X_{i}\right)
\end{aligned}
$$

- the recursive dependencies in the BP equations can be resolved iff the graph is a tree!

BP - relation to Elimination Algorithm

- consider the factor graph (tree!) $P_{x_{1: 6}}=\psi\left(x_{1}, x_{2}, x_{3}\right) \psi\left(x_{1}, x_{4}, x_{5}\right)$
- Elimination Algorithm: (pick elimination order from leaves to root)

$$
\begin{aligned}
& P\left(x_{1}\right)=\left[\sum_{x_{2}, x_{3}} \psi\left(x_{1}, x_{2}, x_{3}\right)\right]\left[\sum_{x_{4}, x_{5}} \psi\left(x_{1}, x_{4}, x_{5}\right)\right] \\
& P\left(x_{1}\right)=t_{1}\left(x_{1}\right) t_{2}\left(x_{1}\right)
\end{aligned}
$$

- Belief Propagation:

$$
\begin{aligned}
b\left(x_{1}\right) & =\mu_{C \rightarrow 1}\left(x_{1}\right) \mu_{D \rightarrow 1}\left(x_{1}\right) \\
\mu_{C \rightarrow 1} & =\sum_{x_{2}, x_{3}} \psi\left(x_{1}, x_{2}, x_{3}\right) \\
\mu_{D \rightarrow 1} & =\sum_{x_{4}, x_{5}} \psi\left(x_{1}, x_{4}, x_{5}\right)
\end{aligned}
$$

- messages correspond to temporal factors in Elimination Alg!
\Rightarrow the computed belief is equal to the marginal from the Elimination Algorithm
\Rightarrow when we compute all messages on a tree, we can return all marginals!
- proof of correctness of BP on trees

BP on trees \& Naive Bayes

- what's so special about trees?
- we can resolve recursive BP equations, and:
- the branches of each node in a tree contain independent information
- recall Naive Bayes:

- one hidden variable, many conditionally independent evidences
- posterior: $P\left(x \mid y_{1: n}\right) \propto P(x) \prod_{i=1}^{n} \mu_{i}(x)$ with $\mu_{i}(x):=P\left(Y_{i}=y_{i} \mid x\right)$
- multiplying distributions \leftrightarrow fusing (independent!) information!
\Rightarrow every node in a tree is like Naive Bayes, with each branch contributing independent information!
- the (posterior) belief at a node is the product of all incoming
messages! $\quad\left(b_{i}\left(X_{i}\right):=\prod_{C \in \nu(i)} \mu_{C \rightarrow i}\left(X_{i}\right)\right)$

BP update equations

- what if the model is not a tree? cannot resolve the recursions...!?
- use BP equations as update equations:
- initialize all messages as one: $\mu_{C \rightarrow i}=1, \mu_{i \rightarrow C}=1$
- update messages

$$
\begin{aligned}
& \mu_{C \rightarrow i}^{\mathrm{new}}\left(X_{i}\right)=\sum_{X_{C} \backslash X_{i}} \psi_{C}\left(X_{C}\right) \prod_{j \in C, j \neq i} \mu_{j \rightarrow C}^{\text {old }}\left(X_{j}\right) \\
& \mu_{i \rightarrow C}^{\text {new }}\left(X_{i}\right)=\prod_{D \in \nu(i), D \neq C} \mu_{D \rightarrow i}^{\text {old }}\left(X_{i}\right)
\end{aligned}
$$

- compute current beliefs

$$
b_{C}\left(X_{C}\right):=\psi_{C}\left(X_{C}\right) \prod_{i \in C} \mu_{i \rightarrow C}\left(X_{i}\right), \quad b_{i}\left(X_{i}\right):=\prod_{C \in \nu(i)} \mu_{C \rightarrow i}\left(X_{i}\right)
$$

- alternative equations:

$$
\begin{aligned}
\mu_{C \rightarrow i}^{\text {new }}\left(X_{i}\right) & =\frac{1}{\mu_{i \rightarrow C}^{\text {old }}\left(X_{i}\right)} \sum_{X_{C} \backslash X_{i}} b_{C}^{\text {old }}\left(X_{C}\right) \\
\mu_{i \rightarrow C}^{\text {new }}\left(X_{i}\right) & =\frac{1}{\mu_{C \rightarrow i}^{\text {old }}\left(X_{i}\right)} b_{i}^{\text {old }}\left(X_{i}\right)
\end{aligned}
$$

BP \& marginal consistency as fixed point

- definition of marginal consistency: when two cliques C and D and share a variable X_{i}, then their marginal beliefs should coincide,

$$
\begin{equation*}
\sum_{X_{C} \backslash X_{i}} b\left(X_{C}\right)=\sum_{X_{D} \backslash X_{i}} b\left(X_{D}\right)=b\left(X_{i}\right) \tag{1}
\end{equation*}
$$

Note, consistency also implies

$$
b\left(X_{i}\right)=\mu_{C \rightarrow i}\left(X_{i}\right) \mu_{i \rightarrow C}\left(X_{i}\right)
$$

- marginal consistency is a fixed point of the BP updates!
(if (1) holds, the BP update do not change the messages)
- trivialy to see with the alternative update equations

$$
\begin{aligned}
& \mu_{C \rightarrow i}^{\text {new }}\left(X_{i}\right)=\frac{1}{\mu_{i \rightarrow C}^{\text {old }}\left(X_{i}\right)} \sum_{X_{C} \backslash X_{i}} b_{C}^{\text {old }}\left(X_{C}\right) \\
& \mu_{i \rightarrow C}^{\text {new }}\left(X_{i}\right)=\frac{1}{\mu_{C \rightarrow i}^{\text {old }}\left(X_{i}\right)} b_{i}^{\text {old }}\left(X_{i}\right)
\end{aligned}
$$

BP - summary so far

- 1) BP (with recursive computation of messages) leads to exact inference on trees (\leftrightarrow elimination algorithm)
- 2) marginal consistency is a fixed point of the update equations
- this statement is true also non-trees! (loopy graphs)
- on trees, the parallel update of messages will converge to the true messages
- on non-trees, when it converges, then to a state of marginal consistency
- apply BP on loopy graphs?

BP \& the problem with loops

[no fully rigorous treatement in this lecture]

- problem on an intuitive level:
- loops \Rightarrow this is no Naive Bayes anymore!
- branches of a node to not represent independent information anymore!
- BP is multiplying (=fusion) messages from dependent sources of information
- echo effects
\Rightarrow can diverge
\Rightarrow typically converges, but to a perturbed results
(e.g., positiv feedback \rightarrow over confident posteriors)

BP \& the problem with loops

- there exists a theory on what loopy BP converges to Bethe approximation, (Yedidia, Freeman, \& Weiss, 2001)
- we shouldn't be overly disappointed:
- if BP was exact on loopy graphs we could efficiently solve NP hard problems...
- loopy BP is a very interesting approximation to solving an NP hard problem
- is hence also applied in context of combinatorial optimization (e.g., SAT problems)
- ways to reduce (not fully resolve!) the problems with loops:
- Generalized BP
- loop corrections
- ongoing research

BP - wrapup

- BP very powerful inference method
- local computations, local integration of messages (Naive Bayes)
- very concrete idea/model of information processing on networks
- exact on trees
- different versions
- recursive computation of exact messages (possible only on trees) \rightarrow exact inference
- initialize all messages as 1 , then update them iteratively
- parallel update (recompute factor-to-variable, then variable-to-factor messages)
- sequential update (recompute messages in some order)
- further reading
- lecture notes
http://user.cs.tu-berlin.de/~mtoussai/notes/index.html
- the references therein!

BP \& important special cases

- general BP equations:

$$
\begin{aligned}
& \mu_{C \rightarrow i}\left(X_{i}\right)=\sum_{X_{C} \backslash X_{i}} \psi_{C}\left(X_{C}\right) \prod_{j \in C, j \neq i} \mu_{j \rightarrow C}\left(X_{j}\right), \\
& \mu_{i \rightarrow C}\left(X_{i}\right)=\prod_{D \in \nu(i), D \neq C} \mu_{D \rightarrow i}\left(X_{i}\right)
\end{aligned}
$$

- special case pair-wise factors: each clique C is a pair $C=\left(X_{i}, X_{j}\right)$ we can define variable-to-variable messages $\mu_{j \rightarrow i}\left(X_{i}\right):=\mu_{C \rightarrow i}\left(X_{i}\right)$ where $C=\left(X_{i}, X_{j}\right)$ is unique

$$
\mu_{j \rightarrow i}\left(X_{i}\right)=\sum_{X_{j}} \psi_{C}\left(X_{i}, X_{j}\right) \prod_{k: k \neq i} \mu_{k \rightarrow j}\left(X_{j}\right),
$$

- is an important special case
- Hidden Markov Model
- Boltzmann machine (model of a neural network)

BP \& important special cases

- general BP equations:

$$
\begin{aligned}
& \mu_{C \rightarrow i}\left(X_{i}\right)=\sum_{X_{C} \backslash X_{i}} \psi_{C}\left(X_{C}\right) \prod_{j \in C, j \neq i} \mu_{j \rightarrow C}\left(X_{j}\right), \\
& \mu_{i \rightarrow C}\left(X_{i}\right)=\prod_{D \in \nu(i), D \neq C} \mu_{D \rightarrow i}\left(X_{i}\right)
\end{aligned}
$$

- special case each variable X_{i} is contained in only two cliques we can define clique-to-clique messages $\mu_{D \rightarrow C}\left(X_{i}\right):=\mu_{i \rightarrow C}\left(X_{i}\right)$ where $i=C \cap D$ is unique

$$
\mu_{D \rightarrow C}\left(X_{i}\right)=\sum_{X_{D} \backslash X_{i}} \psi_{D}\left(X_{D}\right) \prod_{E: E \neq C} \mu_{E \rightarrow D}\left(X_{E \cap D}\right),
$$

- also relevant:
- these are the inference equations on a "Junction Tree" (role of variables is replaced by separators)

Summary

- factor graphs:
- simply represent the factors in the joint, and which variables they depend on
- elimination algorithm:
- summing over a variable produces a new temporary factor
- iteratively: summation, augment the list with the new factor, take the old factors out of the list
- Belief Propagation (aka Message Passing)
- generic inference method
- exact on trees (equivalent to elimination algorithm)
- approximate on loops
- special case for pair-wise coupling (e.g., HMMs, many more)

