
Introduction to Graphical Models
lecture 3 - Elimination Algorithm & Belief Propagation

Marc Toussaint
TU Berlin

– factor graphs
– Elilmination Algorithm
– Belief Propagation & special cases

1/28

last time’s summary

• today:
– what is a Bayes Net
– what is inference good for
– usage of inference software

• next time:
– if you had to program such an inference software
– algorithms for inference
– factor graphs, elimination, Belief Propagation

2/28

recap: Bayesian Networks
• Bayesian Network: graphical notation of conditional (in)dependencies

A

T

E

X D

L

S

B

⇐⇒ P (D,X,E,B,L, T, S,A) =

P (D|E,B) P (X|E) P (E|T,L) P (B|S) P (L|S) P (T |A) P (S) P (A)

• A Bayesian network is a DAG that defines for each node Xi what the parents
π(i) such that

P (X1:n) =
nY
i=1

P (Xi |Xπ(i))

(notation: Xπ(i) = (Xa, .., Xb) if π(i) = (a, .., b)) 3/28

Bayes Net→ facor graph

• for the computations, what matters are the factors the joint is build of:

Example:

X6

X3 X5

X4
X2

X1

⇐⇒ P (x1:6) =
P (x1) P (x2|x1) P (x3|x1) P (x4|x2) P (x5|x3) P (x6|x2, x5)

problem: compute P (x1, x6)

4/28

Bayes Net→ facor graph
... continued...

P (x1, x6)

=
X
x2

X
x3

X
x4

X
x5

P (x1) P (x2|x1) P (x3|x1) P (x4|x2) P (x5|x3) P (x6|x2, x5)

= P (x1)
X
x2

P (x2|x1)
X
x3

P (x3|x1)
X
x4

P (x4|x2)
X
x5

P (x5|x3) P (x6|x2, x5)

= P (x1)
X
x2

P (x2|x1)
X
x3

P (x3|x1)
X
x4

P (x4|x2) t1(x2, x3, x6)

= P (x1)
X
x2

P (x2|x1)
X
x3

P (x3|x1) t1(x2, x3, x6)
X
x4

P (x4|x2)

= P (x1)
X
x2

P (x2|x1) t2(x2)
X
x3

P (x3|x1) t1(x2, x3, x6)

= P (x1)
X
x2

P (x2|x1) t2(x2) t3(x1, x2, x6)

= P (x1) t4(x1, x6)

→ what matters is: on which variables depends each term 5/28

Bayes Net→ facor graph
• Bayesian Network:

X6

X3 X5

X4
X2

X1

⇐⇒ P (x1:6) = P (x1) P (x2|x1) P (x3|x1) P (x4|x2) P (x5|x3) P (x6|x2, x5)

• Factor Graph:

X6

X3 X5

X4
X2

X1

⇐⇒ P (x1:6) = ψ1(x1, x2) ψ2(x3, x1) ψ3(x2, x4) ψ4(x3, x5) ψ5x2, x5, x6)6/28

factor graphs
• mathematically: a factor graph is given by a

– a set of random variables variables X1, .., Xn

– a set of cliques C1, .., Ck (which are tuples of variables)
– for each clique a factor ψi(XCi) s.t.:

P (X1, .., Xn) =

kY
i=1

ψi(XCi)

(notation: XC = (Xa, .., Xb) if C = (a, .., b))

• graphically: a factor graph is a bi-partite graph with
– factors (black boxes) connecting to
– variables (circles)

• a factor graph is more general than a Bayes Net:
– describes general couplings between variables in terms of common factors
– not only contidional probabilities

• easy to represent in a computer 7/28

factor graphs

• asia example:
Bayes Net:

A

T

E

X D

L

S

B

⇐⇒ P (D,X,E,B,L, T, S,A) =
P (D|E,B) P (X|E) P (E|T, L) P (B|S) P (L|S) P (T |A) P (S) P (A)

8/28

factor graphs

• asia example:
factor graph:

A

T

E

X D

L

S

B

⇐⇒ P (D,X,E,B,L, T, S,A) =
ψ1(D,E,B) ψ2(X,E) ψ3(E, T, L) ψ4(B,S) ψ5(L, S) ψ6(T,A)

• Bayes Net→ factor graph corresponds to moralization...

9/28

digression: additive decomposable functions
• graphical models describe how a joint factors

– factorization corresponds to independence (by def)
– factors correspond to “directly coupled/interacting” variables

• take the neg-log of the joint:

E(X1:n) := − logP (X1:n) =

kX
i=1

φi(XCi) with φi = − logψi

assigns an error or energy to every possible configuration x1:n

[Physics: at temperature T an ensemble of particles is distributed as
P (X1:n) ∝ exp(−E(X1:n)/T)]

• E(X1:n) is an additive decomposable function!
– optimization: find argminX1:n

E(X1:n)

– additive decomposition makes optimization easier
– expresses independence in the sense of optimization
– optimization of E closely related to inference in P

10/28

Elimination Algorithm
... same example as above – in terms of a factor graph

• Factor Graph:

X6

X3 X5

X4
X2

X1

⇐⇒ P (x1:6) = ψ(x1, x2) ψ(x3, x1) ψ(x2, x4) ψ(x3, x5) ψ(x2, x5, x6)

problem: compute P (x1, x6)

11/28

Elimination Algorithm
P (x1, x6)

=
X
x2

X
x3

X
x4

X
x5

ψ(x1, x2) ψ(x3, x1) ψ(x2, x4) ψ(x3, x5) ψ(x2, x5, x6)

=
X
x2

X
x3

X
x4

ψ(x1, x2) ψ(x3, x1) ψ(x2, x4)
X
x5

ψ(x3, x5) ψ(x2, x5, x6)

=
X
x2

X
x3

X
x4

ψ(x1, x2) ψ(x3, x1) ψ(x2, x4) t1(x2, x3, x6)

=
X
x2

X
x3

ψ(x1, x2) ψ(x3, x1) t1(x2, x3, x6)
X
x4

ψ(x2, x4)

=
X
x2

X
x3

ψ(x1, x2) ψ(x3, x1) t1(x2, x3, x6) t2(x2)

=
X
x2

ψ(x1, x2) t2(x2)
X
x3

ψ(x3, x1) t1(x2, x3, x6)

=
X
x2

ψ(x1, x2) t2(x2) t3(x1, x2, x6)

= t4(x1, x6)

• we can automate this!
12/28

Elimination Algorithm
• eliminate single variable(F, i)

1: Input: list F of factors, variable id i
2: Output: list F of factors
3: find relevant subset f ⊂ F of factors over i: f = {C : i ∈ C}
4: define remaining clique Ct = all variables in f except i Ct = vars(f) \ {i}
5: compute temporary factor t(XCt) =

P
Xi

Q
ψ∈f ψ

6: remove old factors f and append new temporary factor t to F
7: return F

• elimination algorithm(m,F,Co)

1: Input: list F of factors, tuple Co of output variables ids
2: Output: single factor m over variables XCo

3: define all variables present in F : V = vars(F)

4: define variables to be eliminated: E = V \ Co
5: for all i ∈ E: eliminate single variable(F, i)

6: for all remaining factors, compute the product m =
Q
ψ∈F ψ

7: return m 13/28

Elimination Algorithm

• pros:
– very simple, trivial to prove correct

(does exactly what we’d do on paper)

• cons:
– computes only one marginal P (Xi)
– need to call it n-times to compute all marginals P (X1),.., P (Xn)

14/28

Belief propagation
• ... do somehow the same as elimination, but:

– more locally
– with other kinds of temporary factors, reusable for all marginals

• belief propagation:
– compute messages

µC→i(Xi) =
X

XC\Xi

ψC(XC)
Y

j∈C,j 6=i

µj→C(Xj) ,

µi→C(Xi) =
Y

D∈ν(i),D 6=C

µD→i(Xi)

– from the messages, compute beliefs

bC(XC) := ψC(XC)
Y
i∈C

µi→C(Xi) , bi(Xi) :=
Y

C∈ν(i)

µC→i(Xi)

– factor-to-variable messages µC→i
– variable-to-factor messages µi→C

15/28

understanding BP

1) when can we resolve the recursive equations?

2) compare to Elimination Algorithm on a tree

3) trees, independent sources of information, & Naive Bayes!

4) local consistency as fixed point of message updates

5) the problem with loops, Bethe approximation

16/28

BP – resolving the recursion
• BP equations:

µC→i(Xi) =
X

XC\Xi

ψC(XC)
Y

j∈C,j 6=i

µj→C(Xj) ,

µi→C(Xi) =
Y

D∈ν(i),D 6=C

µD→i(Xi)

µC→1
µ1→C

µ3→C
µ2→C

µ1→D

µD→1

X1

X2

X3

D
C

X4

X5

• the recursive dependencies in the BP equations can be resolved
iff the graph is a tree!

17/28

BP – relation to Elimination Algorithm
• consider the factor graph (tree!) Px1:6 = ψ(x1, x2, x3) ψ(x1, x4, x5)

• Elimination Algorithm: (pick elimination order from leaves to root)

P (x1) =
h X
x2,x3

ψ(x1, x2, x3)
i h X

x4,x5

ψ(x1, x4, x5)
i

P (x1) = t1(x1) t2(x1)

• Belief Propagation:

b(x1) = µC→1(x1) µD→1(x1)

µC→1 =
X
x2,x3

ψ(x1, x2, x3)

µD→1 =
X
x4,x5

ψ(x1, x4, x5)

• messages correspond to temporal factors in Elimination Alg!
⇒ the computed belief is equal to the marginal from the Elimination Algorithm
⇒ when we compute all messages on a tree, we can return all marginals!

• proof of correctness of BP on trees 18/28

BP on trees & Naive Bayes
• what’s so special about trees?

– we can resolve recursive BP equations, and:
– the branches of each node in a tree contain independent information

• recall Naive Bayes:
X

Y1 Y2 Y3 Yn ⇐⇒ P (X,Y1:n) = P (X)
∏n
i=1 P (Yi|X)

– one hidden variable, many conditionally independent evidences
– posterior: P (x|y1:n) ∝ P (x)

∏n
i=1 µi(x) with µi(x) := P (Yi=yi |x)

– multiplying distributions↔ fusing (independent!) information!

⇒ every node in a tree is like Naive Bayes, with each branch contributing
independent information!
– the (posterior) belief at a node is the product of all incoming
messages! (bi(Xi) :=

∏
C∈ν(i) µC→i(Xi))

19/28

BP update equations
• what if the model is not a tree? cannot resolve the recursions...!?

• use BP equations as update equations:
– initialize all messages as one: µC→i = 1, µi→C = 1

– update messages

µnew
C→i(Xi) =

X
XC\Xi

ψC(XC)
Y

j∈C,j 6=i

µold
j→C(Xj) ,

µnew
i→C(Xi) =

Y
D∈ν(i),D 6=C

µold
D→i(Xi)

– compute current beliefs

bC(XC) := ψC(XC)
Y
i∈C

µi→C(Xi) , bi(Xi) :=
Y

C∈ν(i)

µC→i(Xi)

• alternative equations:

µnew
C→i(Xi) =

1

µold
i→C(Xi)

X
XC\Xi

bold
C (XC)

µnew
i→C(Xi) =

1

µold
C→i(Xi)

bold
i (Xi)

20/28

BP & marginal consistency as fixed point
• definition of marginal consistency:

when two cliques C and D and share a variable Xi, then their marginal
beliefs should coincide,∑

XC\Xi

b(XC) =
∑

XD\Xi

b(XD) = b(Xi) (1)

Note, consistency also implies

b(Xi) = µC→i(Xi) µi→C(Xi)

• marginal consistency is a fixed point of the BP updates!
(if (1) holds, the BP update do not change the messages)

– trivialy to see with the alternative update equations

µnew
C→i(Xi) =

1
µold
i→C(Xi)

∑
XC\Xi

bold
C (XC)

µnew
i→C(Xi) =

1
µold
C→i(Xi)

bold
i (Xi)

21/28

BP – summary so far

• 1) BP (with recursive computation of messages) leads to exact
inference on trees (↔ elimination algorithm)

• 2) marginal consistency is a fixed point of the update equations
– this statement is true also non-trees! (loopy graphs)
– on trees, the parallel update of messages will converge to the true
messages
– on non-trees, when it converges, then to a state of marginal
consistency

• apply BP on loopy graphs?

22/28

BP & the problem with loops

[no fully rigorous treatement in this lecture]

• problem on an intuitive level:
– loops⇒ this is no Naive Bayes anymore!
– branches of a node to not represent independent information
anymore!
– BP is multiplying (=fusion) messages from dependent sources of
information
– echo effects

⇒ can diverge
⇒ typically converges, but to a perturbed results
(e.g., positiv feedback→ over confident posteriors)

23/28

BP & the problem with loops

• there exists a theory on what loopy BP converges to
Bethe approximation, (Yedidia, Freeman, & Weiss, 2001)

• we shouldn’t be overly disappointed:
– if BP was exact on loopy graphs we could efficiently solve NP hard
problems...
– loopy BP is a very interesting approximation to solving an NP hard
problem
– is hence also applied in context of combinatorial optimization (e.g.,
SAT problems)

• ways to reduce (not fully resolve!) the problems with loops:
– Generalized BP
– loop corrections
– ongoing research

24/28

BP – wrapup
• BP very powerful inference method

– local computations, local integration of messages (Naive Bayes)
– very concrete idea/model of information processing on networks
– exact on trees

• different versions
– recursive computation of exact messages (possible only on trees)→ exact
inference
– initialize all messages as 1, then update them iteratively
– parallel update (recompute factor-to-variable, then variable-to-factor
messages)
– sequential update (recompute messages in some order)

• further reading
– lecture notes
http://user.cs.tu-berlin.de/~mtoussai/notes/index.html

– the references therein! 25/28

http://user.cs.tu-berlin.de/~mtoussai/notes/index.html

BP & important special cases
• general BP equations:

µC→i(Xi) =
∑

XC\Xi

ψC(XC)
∏

j∈C,j 6=i

µj→C(Xj) ,

µi→C(Xi) =
∏

D∈ν(i),D 6=C

µD→i(Xi)

• special case pair-wise factors: each clique C is a pair C = (Xi, Xj)
we can define variable-to-variable messages µj→i(Xi) := µC→i(Xi)
where C = (Xi, Xj) is unique

µj→i(Xi) =
∑
Xj

ψC(Xi, Xj)
∏
k:k 6=i

µk→j(Xj) ,

• is an important special case
– Hidden Markov Model
– Boltzmann machine (model of a neural network) 26/28

BP & important special cases
• general BP equations:

µC→i(Xi) =
∑

XC\Xi

ψC(XC)
∏

j∈C,j 6=i

µj→C(Xj) ,

µi→C(Xi) =
∏

D∈ν(i),D 6=C

µD→i(Xi)

• special case each variable Xi is contained in only two cliques
we can define clique-to-clique messages µD→C(Xi) := µi→C(Xi)
where i = C ∩D is unique

µD→C(Xi) =
∑

XD\Xi

ψD(XD)
∏

E:E 6=C

µE→D(XE∩D) ,

• also relevant:
– these are the inference equations on a “Junction Tree”

(role of variables is replaced by separators) 27/28

Summary

• factor graphs:
– simply represent the factors in the joint, and which variables they
depend on

• elimination algorithm:
– summing over a variable produces a new temporary factor
– iteratively: summation, augment the list with the new factor, take the
old factors out of the list

• Belief Propagation (aka Message Passing)
– generic inference method
– exact on trees (equivalent to elimination algorithm)
– approximate on loops
– special case for pair-wise coupling (e.g., HMMs, many more)

28/28

