Introduction to Graphical Models lecture 3 - Elimination Algorithm & Belief Propagation

Marc Toussaint TU Berlin

- factor graphs
- Elilmination Algorithm
- Belief Propagation & special cases

last time's summary

- today:
 - what is a Bayes Net
 - what is inference good for
 - usage of inference software
- next time:
 - if you had to program such an inference software
 - algorithms for inference
 - factor graphs, elimination, Belief Propagation

recap: Bayesian Networks

• Bayesian Network: graphical notation of conditional (in)dependencies

 $\iff P(D, X, E, B, L, T, S, A) = P(D|E, B) \ P(X|E) \ P(E|T, L) \ P(B|S) \ P(L|S) \ P(T|A) \ P(S) \ P(A)$

- A Bayesian network is a DAG that defines for each node X_i what the parents $\pi(i)$ such that

$$P(X_{1:n}) = \prod_{i=1}^{n} P(X_i \mid X_{\pi(i)})$$

(notation: $X_{\pi(i)} = (X_a, ..., X_b)$ if $\pi(i) = (a, ..., b)$)

Bayes Net \rightarrow facor graph

• for the computations, what matters are the factors the joint is build of:

Example:

$$\iff P(x_{1:6}) = P(x_1) P(x_2|x_1) P(x_3|x_1) P(x_4|x_2) P(x_5|x_3) P(x_6|x_2, x_5)$$

problem: compute $P(x_1, x_6)$

Bayes Net \rightarrow facor graph

... continued...

$$\begin{aligned} P(x_1, x_6) \\ &= \sum_{x_2} \sum_{x_3} \sum_{x_4} \sum_{x_5} P(x_1) \ P(x_2 | x_1) \ P(x_3 | x_1) \ P(x_4 | x_2) \ P(x_5 | x_3) \ P(x_6 | x_2, x_5) \\ &= P(x_1) \sum_{x_2} P(x_2 | x_1) \sum_{x_3} P(x_3 | x_1) \sum_{x_4} P(x_4 | x_2) \sum_{x_5} P(x_5 | x_3) \ P(x_6 | x_2, x_5) \\ &= P(x_1) \sum_{x_2} P(x_2 | x_1) \sum_{x_3} P(x_3 | x_1) \sum_{x_4} P(x_4 | x_2) \ t_1(x_2, x_3, x_6) \\ &= P(x_1) \sum_{x_2} P(x_2 | x_1) \sum_{x_3} P(x_3 | x_1) \ t_1(x_2, x_3, x_6) \sum_{x_4} P(x_4 | x_2) \\ &= P(x_1) \sum_{x_2} P(x_2 | x_1) \ t_2(x_2) \sum_{x_3} P(x_3 | x_1) \ t_1(x_2, x_3, x_6) \\ &= P(x_1) \sum_{x_2} P(x_2 | x_1) \ t_2(x_2) \ t_3(x_1, x_2, x_6) \\ &= P(x_1) \sum_{x_2} P(x_2 | x_1) \ t_2(x_2) \ t_3(x_1, x_2, x_6) \end{aligned}$$

 \rightarrow what matters is: on which variables depends each term

Bayes Net \rightarrow facor graph

• Bayesian Network:

 $\iff P(x_{1:6}) = P(x_1) \ P(x_2|x_1) \ P(x_3|x_1) \ P(x_4|x_2) \ P(x_5|x_3) \ P(x_6|x_2,x_5)$

• Factor Graph:

 $\iff P(x_{1:6}) = \psi_1(x_1, x_2) \ \psi_2(x_3, x_1) \ \psi_3(x_2, x_4) \ \psi_4(x_3, x_5) \ \psi_5 x_2, x_5, x_{6} \Big)_{28}$

factor graphs

- mathematically: a factor graph is given by a
 - a set of random variables variables $X_1, ..., X_n$
 - a set of cliques $C_1, .., C_k$ (which are tuples of variables)
 - for each clique a factor $\psi_i(X_{C_i})$ s.t.:

$$P(X_1, ..., X_n) = \prod_{i=1}^k \psi_i(X_{C_i})$$

(notation: $X_C = (X_a, ..., X_b)$ if C = (a, ..., b))

- graphically: a factor graph is a bi-partite graph with
 - factors (black boxes) connecting to
 - variables (circles)
- a factor graph is more general than a Bayes Net:
 - describes general couplings between variables in terms of common factors
 - not only contidional probabilities
- easy to represent in a computer

factor graphs

• asia example:

Bayes Net:

 $\iff P(D, X, E, B, L, T, S, A) =$ $P(D|E, B) \ P(X|E) \ P(E|T, L) \ P(B|S) \ P(L|S) \ P(T|A) \ P(S) \ P(A)$

factor graphs

• asia example:

factor graph:

 $\iff P(D, X, E, B, L, T, S, A) =$ $\psi_1(D, E, B) \ \psi_2(X, E) \ \psi_3(E, T, L) \ \psi_4(B, S) \ \psi_5(L, S) \ \psi_6(T, A)$

• Bayes Net \rightarrow factor graph corresponds to moralization...

digression: additive decomposable functions

- graphical models describe how a joint factors
 - factorization corresponds to independence (by def)
 - factors correspond to "directly coupled/interacting" variables
- take the neg-log of the joint:

$$E(X_{1:n}) := -\log P(X_{1:n}) = \sum_{i=1}^{k} \phi_i(X_{C_i}) \text{ with } \phi_i = -\log \psi_i$$

assigns an *error* or *energy* to every possible configuration $x_{1:n}$ [Physics: at temperature T an ensemble of particles is distributed as $P(X_{1:n}) \propto \exp(-E(X_{1:n})/T)$]

- $E(X_{1:n})$ is an additive decomposable function!
 - optimization: find $\operatorname{argmin}_{X_{1:n}} E(X_{1:n})$
 - additive decomposition makes optimization easier
 - expresses independence in the sense of optimization
 - optimization of ${\boldsymbol E}$ closely related to inference in ${\boldsymbol P}$

... same example as above - in terms of a factor graph

• Factor Graph:

 $\iff P(x_{1:6}) = \psi(x_1, x_2) \; \psi(x_3, x_1) \; \psi(x_2, x_4) \; \psi(x_3, x_5) \; \psi(x_2, x_5, x_6)$

problem: compute $P(x_1, x_6)$

$P(x_1,x_6)$
$=\sum\sum\sum\sum\psi\psi(x_1,x_2)\ \psi(x_3,x_1)\ \psi(x_2,x_4)\ \psi(x_3,x_5)\ \psi(x_2,x_5,x_6)$
x_2 x_3 x_4 x_5
$= \sum \sum \sum \psi(x_1, x_2) \psi(x_3, x_1) \psi(x_2, x_4) \sum \psi(x_3, x_5) \psi(x_2, x_5, x_6)$
x_2 x_3 x_4 x_5
$= \sum \sum \sum \psi(x_1, x_2) \ \psi(x_3, x_1) \ \psi(x_2, x_4) \ t_1(x_2, x_3, x_6)$
x_2 x_3 x_4
$=\sum\sum\psi(x_1,x_2)\;\psi(x_3,x_1)\;m{t_1}(x_2,x_3,x_6)\sum\psi(x_2,x_4)$
x_2 x_3 x_4
$= \sum \sum \psi(x_1, x_2) \ \psi(x_3, x_1) \ {\bm t_1}(x_2, x_3, x_6) \ {\bm t_2}(x_2)$
$x_2 \ x_3$
$= \sum \psi(x_1, x_2) \frac{t_2}{t_2}(x_2) \sum \psi(x_3, x_1) \frac{t_1}{t_1}(x_2, x_3, x_6)$
x_2 x_3
$=\sum\psi(x_1,x_2)~t_2(x_2)~t_3(x_1,x_2,x_6)$
x_2
$=t_4(x_1,x_6)$

• we can automate this!

- $eliminate_single_variable(F, i)$
 - 1: **Input:** list F of factors, variable id i
 - 2: Output: list F of factors
 - 3: find relevant subset $f \subset F$ of factors over i: $f = \{C : i \in C\}$
 - 4: define remaining clique C_t = all variables in f except $i C_t = vars(f) \setminus \{i\}$
 - 5: compute temporary factor $t(X_{C_t}) = \sum_{X_i} \prod_{\psi \in f} \psi$
 - 6: remove old factors f and append new temporary factor t to F
 - 7: return F
- elimination_algorithm(m, F, C_o)
 - 1: Input: list F of factors, tuple C_o of output variables ids
 - 2: Output: single factor m over variables X_{C_o}
 - 3: define all variables present in F: V = vars(F)
 - 4: define variables to be eliminated: $E = V \setminus C_o$
 - 5: for all $i \in E$: eliminate_single_variable(F, i)
 - 6: for all remaining factors, compute the product $m = \prod_{\psi \in F} \psi$
 - 7: return m

pros:

 very simple, trivial to prove correct (does exactly what we'd do on paper)

- cons:
 - computes only one marginal $P(X_i)$
 - need to call it *n*-times to compute all marginals $P(X_1), ..., P(X_n)$

Belief propagation

- ... do somehow the same as elimination, but:
 - more locally
 - with other kinds of temporary factors, reusable for all marginals
- belief propagation:
 - compute messages

$$\mu_{C \to i}(X_i) = \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}(X_j)$$
$$\mu_{i \to C}(X_i) = \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}(X_i)$$

- from the messages, compute beliefs

$$b_C(X_C) := \psi_C(X_C) \prod_{i \in C} \mu_{i \to C}(X_i) , \quad b_i(X_i) := \prod_{C \in \nu(i)} \mu_{C \to i}(X_i)$$

- factor-to-variable messages $\mu_{C \rightarrow i}$
- variable-to-factor messages $\mu_{i \rightarrow C}$

understanding BP

1) when can we resolve the recursive equations?

2) compare to Elimination Algorithm on a tree

3) trees, independent sources of information, & Naive Bayes!

4) local consistency as fixed point of message updates

5) the problem with loops, Bethe approximation

BP – resolving the recursion

• BP equations:

$$\mu_{C \to i}(X_i) = \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}(X_j) ,$$
$$\mu_{i \to C}(X_i) = \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}(X_i)$$

• the recursive dependencies in the BP equations can be resolved *iff the graph is a tree!*

BP – relation to Elimination Algorithm

- consider the factor graph (tree!) $P_{x_{1:6}} = \psi(x_1, x_2, x_3) \ \psi(x_1, x_4, x_5)$
- Elimination Algorithm: (pick elimination order from leaves to root)

$$P(x_1) = \left[\sum_{x_2, x_3} \psi(x_1, x_2, x_3)\right] \left[\sum_{x_4, x_5} \psi(x_1, x_4, x_5)\right]$$
$$P(x_1) = \mathbf{t_1}(x_1) \ \mathbf{t_2}(x_1)$$

· Belief Propagation:

$$b(x_1) = \mu_{C \to 1}(x_1) \ \mu_{D \to 1}(x_1)$$
$$\mu_{C \to 1} = \sum_{x_2, x_3} \psi(x_1, x_2, x_3)$$
$$\mu_{D \to 1} = \sum_{x_4, x_5} \psi(x_1, x_4, x_5)$$

- messages correspond to temporal factors in Elimination Alg!
 - \Rightarrow the computed belief is equal to the marginal from the Elimination Algorithm
 - \Rightarrow when we compute *all* messages on a tree, we can return *all* marginals!
- proof of correctness of BP on trees

BP on trees & Naive Bayes

- what's so special about trees?
 - we can resolve recursive BP equations, and:
 - the branches of each node in a tree contain independent information
- recall Naive Bayes:

 $\overbrace{V_1} \overbrace{V_2} \overbrace{V_3} \cdots \overbrace{V_n} \iff P(X, Y_{1:n}) = P(X) \prod_{i=1}^n P(Y_i|X)$

- one hidden variable, many conditionally independent evidences

- posterior: $P(x|y_{1:n}) \propto P(x) \prod_{i=1}^{n} \mu_i(x)$ with $\mu_i(x) := P(Y_i = y_i \mid x)$
- multiplying distributions \leftrightarrow fusing (independent!) information!
- ⇒ every node in a tree is like Naive Bayes, with each branch contributing independent information!

- the (posterior) belief at a node is the product of all incoming messages! $(b_i(X_i) := \prod_{C \in \nu(i)} \mu_{C \to i}(X_i))$

BP update equations

- what if the model is not a tree? cannot resolve the recursions...!?
- use BP equations as update equations:

- initialize all messages as one: $\mu_{C \to i} = 1, \ \mu_{i \to C} = 1$

- update messages

$$\begin{split} \mu_{C \to i}^{\text{new}}(X_i) &= \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}^{\text{old}}(X_j) ,\\ \mu_{i \to C}^{\text{new}}(X_i) &= \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}^{\text{old}}(X_i) \end{split}$$

- compute current beliefs

$$b_C(X_C) := \psi_C(X_C) \prod_{i \in C} \mu_{i \to C}(X_i), \quad b_i(X_i) := \prod_{C \in \nu(i)} \mu_{C \to i}(X_i)$$

• alternative equations:

$$\begin{split} \mu_{C \to i}^{\text{new}}(X_i) &= \frac{1}{\mu_{i \to C}^{\text{old}}(X_i)} \sum_{X_C \setminus X_i} b_C^{\text{old}}(X_C) \\ \mu_{i \to C}^{\text{new}}(X_i) &= \frac{1}{\mu_{C \to i}^{\text{old}}(X_i)} \ b_i^{\text{old}}(X_i) \end{split}$$
20/28

BP & marginal consistency as fixed point

• definition of marginal consistency:

when two cliques C and D and share a variable X_i , then their marginal beliefs should coincide,

$$\sum_{X_C \setminus X_i} b(X_C) = \sum_{X_D \setminus X_i} b(X_D) = b(X_i)$$
(1)

Note, consistency also implies

$$b(X_i) = \mu_{C \to i}(X_i) \ \mu_{i \to C}(X_i)$$

- marginal consistency is a fixed point of the BP updates!
 (if (1) holds, the BP update do not change the messages)
 - trivialy to see with the alternative update equations

$$\begin{split} \mu_{C \to i}^{\text{new}}(X_i) &= \frac{1}{\mu_{i \to C}^{\text{old}}(X_i)} \sum_{X_C \setminus X_i} b_C^{\text{old}}(X_C) \\ \mu_{i \to C}^{\text{new}}(X_i) &= \frac{1}{\mu_{C \to i}^{\text{old}}(X_i)} b_i^{\text{old}}(X_i) \end{split}$$

BP – summary so far

- 1) BP (with recursive computation of messages) leads to exact inference on trees (↔ elimination algorithm)
- 2) marginal consistency is a fixed point of the update equations
 - this statement is true also non-trees! (loopy graphs)
 - on trees, the parallel update of messages will converge to the true messages
 - on non-trees, when it converges, then to a state of marginal consistency
- apply BP on loopy graphs?

BP & the problem with loops

[no fully rigorous treatement in this lecture]

- problem on an intuitive level:
 - loops \Rightarrow this is no Naive Bayes anymore!
 - branches of a node to not represent independent information anymore!
 - BP is multiplying (=fusion) messages from dependent sources of information
 - echo effects
 - \Rightarrow can diverge
 - \Rightarrow typically converges, but to a perturbed results
 - (e.g., positiv feedback \rightarrow over confident posteriors)

BP & the problem with loops

- there exists a theory on what loopy BP converges to Bethe approximation, (Yedidia, Freeman, & Weiss, 2001)
- we shouldn't be overly disappointed:

- if BP was exact on loopy graphs we could efficiently solve NP hard problems...

 loopy BP is a very interesting approximation to solving an NP hard problem

 is hence also applied in context of combinatorial optimization (e.g., SAT problems)

- ways to reduce (not fully resolve!) the problems with loops:
 - Generalized BP
 - loop corrections
 - ongoing research

BP – wrapup

- BP very powerful inference method
 - local computations, local integration of messages (Naive Bayes)
 - very concrete idea/model of information processing on networks
 - exact on trees
- different versions
 - recursive computation of exact messages (possible only on trees) \rightarrow exact inference
 - initialize all messages as 1, then update them iteratively
 - parallel update (recompute factor-to-variable, then variable-to-factor messages)
 - sequential update (recompute messages in some order)
- further reading
 - lecture notes

http://user.cs.tu-berlin.de/~mtoussai/notes/index.html

- the references therein!

BP & important special cases

• general BP equations:

$$\mu_{C \to i}(X_i) = \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}(X_j) ,$$
$$\mu_{i \to C}(X_i) = \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}(X_i)$$

• special case pair-wise factors: each clique C is a pair $C = (X_i, X_j)$ we can define variable-to-variable messages $\mu_{j \to i}(X_i) := \mu_{C \to i}(X_i)$ where $C = (X_i, X_j)$ is unique

$$\mu_{j \to i}(X_i) = \sum_{X_j} \psi_C(X_i, X_j) \prod_{k: k \neq i} \mu_{k \to j}(X_j) ,$$

- is an important special case
 - Hidden Markov Model
 - Boltzmann machine (model of a neural network)

BP & important special cases

• general BP equations:

$$\mu_{C \to i}(X_i) = \sum_{X_C \setminus X_i} \psi_C(X_C) \prod_{j \in C, j \neq i} \mu_{j \to C}(X_j) ,$$
$$\mu_{i \to C}(X_i) = \prod_{D \in \nu(i), D \neq C} \mu_{D \to i}(X_i)$$

• special case each variable X_i is contained in only two cliques we can define *clique-to-clique* messages $\mu_{D\to C}(X_i) := \mu_{i\to C}(X_i)$ where $i = C \cap D$ is unique

$$\mu_{D \to C}(X_i) = \sum_{X_D \setminus X_i} \psi_D(X_D) \prod_{E: E \neq C} \mu_{E \to D}(X_{E \cap D}) ,$$

- also relevant:
 - these are the inference equations on a "Junction Tree" (role of variables is replaced by separators)

Summary

• factor graphs:

- simply represent the factors in the joint, and which variables they depend on

- elimination algorithm:
 - summing over a variable produces a new temporary factor
 - iteratively: summation, augment the list with the new factor, take the old factors out of the list
- Belief Propagation (aka Message Passing)
 - generic inference method
 - exact on trees (equivalent to elimination algorithm)
 - approximate on loops
 - special case for pair-wise coupling (e.g., HMMs, many more)