Introduction to Graphical Models

lecture 2 - Bayesian Networks

Marc Toussaint ${ }^{1}$ TU Berlin
overview:

- multiplying probability tables - naive Bayes
- graphical models
- elimination algorithm

Independence

- definition: X is independent of Y iff:

$$
P(X \mid Y)=P(X)
$$

for all possible values $x \in \operatorname{dom}(X)$ and $y \in \operatorname{dom}(Y)$
(matrix thinkers: every column of $P(X \mid Y)$ is equal)
(definition holds also for set so variables $X=\left(X_{1}, . ., X_{n}\right), Y=\left(Y_{1}, . ., Y_{m}\right)$)

- in terms of the joint: X independent of Y iff:

$$
P(X, Y)=P(X) P(Y)
$$

(matrix thinkers: matrix $P(X, Y)$ is the outer product of $P(X)$ and $P(Y)$)

- X independent of $Y \Longleftrightarrow Y$ independent of X
- a set of variables $X_{1}, . ., X_{n}$ is independent iff

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{1}^{n} P\left(X_{i}\right)
$$

cheat sheat

- a random variable X assignes probabilties $P(X=x) \in \mathbb{R}$ to values $x \in \operatorname{dom}(x)$
- probabilty distribution \leftrightarrow table (vector) of probabilties for each value (normalization: $\sum_{X} P(X)=1$)
- joint distribution $P(X, Y) \leftrightarrow$ table (matrix) of probabilties
- definition: marginal $P(X)=\sum_{Y} P(X, Y) \quad$ (summing over columns/rows)
- definition: conditional $P(X \mid Y)=\frac{P(X, Y)}{P(Y)}$
- implications:

$$
\begin{aligned}
P(X, Y) & =P(X \mid Y) P(Y)=P(Y \mid X) P(X) \\
P\left(X_{1}, . ., X_{n}\right) & =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, . ., X_{i-1}\right) \\
P(X \mid Y) & =\frac{P(Y \mid X)}{P(Y)} P(X), \quad \text { posterior }=\frac{\text { likelihood }}{\text { evidence }} \text { prior }
\end{aligned}
$$

- definition: inference is the problem to compute

$$
P\left(Y_{1: k} \mid E_{1: m}\right)=\frac{P\left(Y_{1: k}, E_{1: m}\right)}{P\left(E_{1: m}\right)} \propto \sum_{H_{1: n}} P\left(Y_{1: k}, E_{1: m}, H_{1: n}\right)
$$

Independence

recall example:

	Toothache $=$ true	Toothache $=$ false
Cavity $=$ true	0.04	0.06
Cavity $=$ false	0.01	0.89

- is T independent from C ?

Conditional Independence

- definition: X is conditionally independent of Y given Z iff

$$
P(X \mid Y, Z)=P(X \mid Z)
$$

for all $x \in \operatorname{dom}(X), y \in \operatorname{dom}(Y), z \in \operatorname{dom}(Z)$

- in terms of the joint:

$$
P(X, Y, Z)=P(X, Y \mid Z) P(Z)=P(X \mid Z) P(Y \mid Z) P(Z)
$$

Bayesian Networks

1st model:

```
P(Z,Y,X)=
P(Z|Y,X) P(Y|X)P(X)
```

2nd model:
$P(Z, Y, X)=$
$P(Z \mid Y) P(Y \mid X) P(X)$

- recall the general chain rule:

$$
P\left(X_{1}, . ., X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, . ., X_{i-1}\right)
$$

- Bayesian network is a graphical notation of (in)dependence

Bayesian Network example

$$
P(S, T, G, F, B)=P(S \mid T, F) P(T \mid B) P(G \mid F, B) P(F) P(B)
$$

- table sizes: $\mathrm{LHS}=2^{5}$ RHS $=s^{3}+2^{2}+2^{3}+2+2$
- what is the probability of:
$P(B=$ good,$T=$ no, $G=$ empty,$F=$ notempty,$S=n o)$?

Inference in the Bayes Net

recall: general def of inference:

$$
P\left(Y_{1: k} \mid E_{1: m}\right)=\frac{P\left(Y_{1: k}, E_{1: m}\right)}{P\left(E_{1: m}\right)} \propto \sum_{H_{1: n}} P\left(Y_{1: k}, E_{1: m}, H_{1: n}\right)
$$

- in our example
- compute $P(B \mid S=n o)$ or $P(F \mid T=n o)$
- compute $P(B, F \mid T=n o)$
- definition: elimination \equiv "summing out variables"
(eliminate Y from $P(X, Y \mid Z)$ means to compute $P(X \mid Z)=\sum_{Y} P(X, Y \mid Z)$)
common methods:
- to compute a single marginal (single inference query like $P(B \mid S=n o)$):
- Variable Elimination (see Jordan, ch 3)
- to compute all marginals (e.g., compute $P(B \mid S=n o)$ and $P(F \mid S=n o)$ and $P(G \mid S=n o)$ and $P(T \mid S=n o))$
- if model is a tree: inference in time linear in the number of nodes (Pearl, 1986); messages are passed up and down the tree; all the necessary computations can be carried out locally. HMMs (chains) are a special case of trees. Pearls method also applies to polytrees (DAGS with no undirected cycles)
- if model is not a tree: clustering (grouping) of nodes to yield a tree of cliques (junction tree) (Lauritzen and Spiegelhalter, 1988)
- approximate methods in general graphs
- sampling, loopy belief propagation, varational methods
$\Longleftrightarrow P(H, W, S, R)=P(H \mid S, R) P(W \mid R) P(S) P(R)$
- Mr. Holmes lives in Los Angeles. One morning when Holmes leaves his house, he realizes that his grass is wet. Is it due to rain, or has he forgotten to turn off his sprinkler?
- Calculate $\mathrm{P}($ rjh $), \mathrm{P}(\mathrm{sjh})$ and compare these values to the prior probabilities
- Calculate $P(r ; s j h) . r$ and s are marginally independent, but conditionally dependent
- Holmes checks Watsons grass, and finds it is also wet. Calculate P(rjh;w), P(sjh;w)
- This effect is called explaining away
model for lung disease:

$\Longleftrightarrow P(D, X, E, B, L, T, S, A)=$
$P(D \mid E, B) P(X \mid E) P(E \mid T, L) P(B \mid S) P(L \mid S) P(T \mid A) P(S) P(A)$

$A=$ trip to asia	$E=$ abnormality in chest
$S=$ smoking	$X=$ X-ray
$T=$ Tuberculosis	$D=$ Dyspnea
$L=$ lung cancer	$B=$ Bronchitis

$L=$ lung cancer
$B=$ Bronchitis

Learning in Bayesian Networks

- General problem: learning probability models
- learning CPTs; easier

Especially easy if all variables are observed, otherwise can use EM

- learning structure; harder

Can try out a number of different structures, but there can be a huge number of structures to search through

- Say more about this later

Naive Bayes

$\Longleftrightarrow P\left(X, Y_{1: n}\right)=P(X) \prod_{i=1}^{n} P\left(Y_{i} \mid X\right)$

- one hidden variable, many conditionally independent evidences
- what is the posterior $P\left(X \mid y_{1: n}\right)$?
$P\left(x \mid y_{1: n}\right) \propto P(x) \prod_{i=1}^{n} \mu_{i}(x)$ with $\mu_{i}(x):=P\left(Y_{i}=y_{i} \mid x\right)$
- the posterior is a product of "messages" (prob. distributions $\mu_{i}(x)$)
- each independent source of information contributes a "message"
- multiplying distributions is the core operation for fusing (independent!) information!

