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cheat sheat
• a random variable X assignes probabilties P (X =x) ∈ R to values x ∈ dom(x)

• probabilty distribution ↔ table (vector) of probabilties for each value
(normalization:

P
X P (X) = 1)

• joint distribution P (X, Y ) ↔ table (matrix) of probabilties

• definition: marginal P (X) =
P

Y P (X, Y ) (summing along columns/rows)

• definition: conditional P (X|Y ) = P (X,Y )
P (Y )

(normalizing each column)

• implications:

P (X, Y ) = P (X|Y ) P (Y ) = P (Y |X) P (X)

P (X1, .., Xn) =
nY

i=1

P (Xi|X1, .., Xi-1)

P (X|Y ) =
P (Y |X)

P (Y )
P (X) , posterior =

likelihood
evidence

prior

• definition: inference is the problem to compute

P (Y1:k |E1:m) =
P (Y1:k, E1:m)

P (E1:m)
∝

X
H1:n

P (Y1:k, E1:m, H1:n)
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the ASIA network: a model for lung disease

A

T

E

X D

L

S

B

⇐⇒ P (D,X,E,B,L, T, S,A) =
P (D|E,B) P (X|E) P (E|T, L) P (B|S) P (L|S) P (T |A) P (S) P (A)

A=trip to asia
S=smoking
T=Tuberculosis
L=lung cancer

E=abnormality in chest
X=X-ray
D=Dyspnea
B=Bronchitis 3/19



Independence
• definition: X is independent of Y iff:

P (X|Y ) = P (X)

for all possible values x ∈ dom(X) and y ∈ dom(Y )
(matrix thinkers: every column of P (X|Y ) is equal)

(definition holds also for set so variables X = (X1, .., Xn), Y = (Y1, .., Ym))

• in terms of the joint: X independent of Y iff:

P (X,Y ) = P (X) P (Y )

(matrix thinkers: matrix P (X, Y ) is the outer product of P (X) and P (Y ))

• X independent of Y ⇐⇒ Y independent of X

• a set of variables X1, .., Xn is independent iff

P (X1, .., Xn) =
n∏

i=1

P (Xi) 4/19



Independence

recall example:

Toothache = true Toothache = false

Cavity = true 0.04 0.06

Cavity = false 0.01 0.89

• is T independent from C ?
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Conditional Independence

• definition: X is conditionally independent of Y given Z iff

P (X|Y,Z) = P (X|Z)

for all x ∈ dom(X), y ∈ dom(Y ), z ∈ dom(Z)

• in terms of the joint:

P (X,Y, Z) = P (X,Y |Z) P (Z) = P (X|Z) P (Y |Z) P (Z)
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Bayesian Networks
1st model:

P (Z, Y,X) =
P (Z|Y,X) P (Y |X) P (X)

X Y

Z

2nd model:

P (Z, Y,X) =
P (Z|X) P (Y |X) P (X)

X Y

Z

• Bayesian network is a graphical notation of (in)dependence
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Bayesian Network example
(Heckermann 1995)

P(G=empty|B=good,F=not empty)=0.04

P(G=empty|B=good,F=empty)=0.97

P(G=empty|B=bad,F=not empty)=0.10

P(G=empty|B=bad,F=empty)=0.99

P(T=no|B=good)=0.03

P(T=no|B=bad)=0.98

P(S=no|T=yes,F=not empty)=0.01

P(S=no|T=yes,F=empty)=0.92

P(S=no|T=no,Fnot empty)=1.00

P(S=no|T=no,F=empty)=1.00

Fuel

Gauge

Battery

TurnOver Start

P(B=bad) =0.02 P(F=empty)=0.05

⇐⇒ P (S, T,G, F,B) = P (S|T, F ) P (T |B) P (G|F,B) P (F ) P (B)

as compared to the general chain rule:

P (S, T, G, F, B) = P (S|T, G, F, B) P (T |G, F, B) P (G|F, B) P (F |B) P (B)
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Bayesian Network example
the Bayesian Network is a graphical notation that says that the joint
can be written as:

P (S, T,G, F,B) = P (S|T, F ) P (T |B) P (G|F,B) P (F ) P (B)

• table sizes: LHS = 25 RHS = 23 + 22 + 23 + 2 + 2

• what is the probability of:
P (B = good, T = no,G = empty, F = notempty, S = no) ?
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Inference in the Bayes Net
recall: general def of inference:

P (Y1:k |E1:m) =
P (Y1:k, E1:m)

P (E1:m)
∝

X
H1:n

P (Y1:k, E1:m, H1:n)

• in our example
– compute P (B|S = no) or P (F |S = no) or P (F |T = no)
– compute P (B,F |T = no)

• definition: elimination ≡ “summing out variables”
(eliminate Y from P (X, Y |Z) means to compute P (X|Z) =

P
Y P (X, Y |Z))
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common methods:

• to compute a single marginal (single inference query like P (B|S = no)):
– Variable Elimination (see Jordan, ch 3)

• to compute all marginals (e.g., compute P (B|S = no) and P (F |S = no)
and P (G|S = no) and P (T |S = no))

– if model is a tree: inference in time linear in the number of nodes (Pearl,
1986); messages are passed up and down the tree; all the necessary
computations can be carried out locally. HMMs (chains) are a special case
of trees. Pearls method also applies to polytrees (DAGS with no
undirected cycles)

– if model is not a tree: clustering (grouping) of nodes to yield a tree of
cliques (junction tree) (Lauritzen and Spiegelhalter, 1988)

• approximate methods in general graphs
– sampling, loopy belief propagation, varational methods
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• we will learn about these ‘automatic’ algorithms for inference next time

• here: some more examples...
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Watson Holmes

P(W=yes|R=yes)=1.0

P(W=yes|R=no)=0.2 P(H=yes|R=yes,S=yes)=1.0

P(H=yes|R=yes,S=no)=1.0

P(H=yes|R=no,S=yes)=0.9

P(H=yes|R=no,S=no)=0.0

Rain

P(R=yes)=0.2

Sprinkler

P(S=yes)=0.1

⇐⇒ P (H,W,S,R) = P (H|S,R) P (W |R) P (S) P (R)
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• Mr. Holmes lives in Los Angeles. One morning when Holmes leaves
his house, he realizes that his grass is wet. Is it due to rain, or has he
forgotten to turn off his sprinkler?

• Calculate P (R|H), P (S|H) and compare these values to the prior
probabilities

• Calculate P (R,S|H). R and S are marginally independent, but
conditionally dependent

• Holmes checks Watsons grass, and finds it is also wet. Calculate
P (R|H,W ), P (S|H,W )

• This effect is called explaining away

JavaBayes: run it from the html page

http://www.cs.cmu.edu/~javabayes/Home/applet.html
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the ASIA network: a model for lung disease

A

T

E

X D

L

S

B

⇐⇒ P (D,X,E,B,L, T, S,A) =
P (D|E,B) P (X|E) P (E|T, L) P (B|S) P (L|S) P (T |A) P (S) P (A)

A=trip to asia
S=smoking
T=Tuberculosis
L=lung cancer

E=abnormality in chest
X=X-ray
D=Dyspnea
B=Bronchitis 15/19



Naive Bayes

X

Y1 Y2 Y3 Yn

⇐⇒ P (X,Y1:n) = P (X)
∏n

i=1 P (Yi|X)

• one hidden variable, many conditionally independent evidences

• what is the posterior P (X|y1:n) ?

P (x|y1:n) ∝ P (x)
∏n

i=1 µi(x) with µi(x) := P (Yi =yi |x)

– the posterior is a product of “messages” (prob. distributions µi(x))
– each independent source of information contributes a “message”

• multiplying distributions is the core operation for fusing (independent!)
information!
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Naive Bayes – lessons learnt...

• 2 fundamental operations for information processing

1) multiplication of probability distributions to fuse (independent)
information

2) summation (elimination) of variables to compute marginals
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Learning in Bayesian Networks

• General problem: learning probability models

– learning CPTs; easier

Especially easy if all variables are observed, otherwise can use
EM

– learning structure; harder

Can try out a number of different structures, but there can be a
huge number of structures to search through

• Say more about this later
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Summary

• today:
– what is a Bayes Net
– what is inference good for
– usage of inference software

• next time:
– if you had to program such an inference software
– algorithms for inference
– factor graphs, elimination, sum-product algorithm
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