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overview:
– why Graphical Models and Bayesian methods?
– overview of the course
– some basics: random variables & probabilties
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Why Graphical Models and Bayesian methods? – 1

• formalization of Information Processing
– data is information
– sensors give information
– outputs/actions/decisions are missing information (to be ‘inferred’)
– coupling between sources/points of information

⇒ Graphical Models formalize “networks of coupled information”

⇒ Information Processing can be viewed as inference or message
passing in Graphical Models
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Why Graphical Models and Bayesian methods? – 2

• neuroscientific motivation:

• Neural Information Processing Systems (NIPS)

Bayesian Brain: Probabilistic Approaches to Neural Coding K. Doya, S.
Ishii, A. Pouget, RPN. Rao (editors), MIT Press (2007)

The Neurodynamics of Belief Propagation on Binary Markov Random
Fields T. Ott, R. Stoop (NIPS 2006)

• Bayesian information processing is a possible abstraction of neuronal
functions
(not a model of how neurons work, but what their function from an information

processing point of view is.)
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Why Graphical Models and Bayesian methods? – 3

• many concrete algorithms can be derived/explained in terms of
graphical models:
– in speech & text processing (HMMs, CRFs, ..)
– in computer vision (MRFs, sensor fusion, ..)
– clustering (Dirichlet processes, LDA)
– regression (GPs)
– reinforcement learning (3rd part of lecture)
– robotics (AICO)
– dimension reduction (GPLVM, GTM)

• Graphical Models/Bayesian methods help to explain/unterstand many
things in one coherent framework

• generic methodology to derive specialized algorithms in your own
domain
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plan
21.04. Introduction

28.04. Diskrete Wahrscheinlichkeitsverteilungen, Bedingte und Gesamtwahrscheinlichkeiten,
Graphische Modelle, Faktorgraphen

05.05. Inferenz, Eliminierungsalgorithmus, Evidenzen

12.05. Summen-Produkt-Algorithmus, Junction Tree Alg. (JTA)

19.05. Beliefpropagierung in zyklischen Graphen (Loopy BP), Mean-Field Alg.

26.05. Hidden Markov Models (HMMs), Forward-Backward Alg., Viterbi, Expectation-
Maximization (EM)

02.06. Bedingte Wahrscheinlichkeiten, (Kernel-) Conditional Random Fields (k-CRFs), Features,
Optimierung

09.06. Optimierung (Fortsetzung), Strukturiertes Perzeptron

16.06. Strukturierte Support-Vektor-Maschinen (SSVMs)

23.06. Influence Diagramme

30.06. Markov Decision Processes (MDPs)

07.07. Inferenz zur Planung, Optimale Handlungsstrategien (Policies)

14.07. Zusammenfassung und Fragestunde
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Questions? ...
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probability theory

• why do we need probabilities?
– of course, in case of random events, stochasticity...

• but also in a deterministic world!:
– lack of knowledge!
– hidden (latent) variables
– expressing uncertainty
– expressing information

• probabilities are a generic tool to express uncertainty, information, and
coupling
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random variables
(for simplicity, this course mainly consideres discrete random variables)

• intuitively: a random variable takes on values with a certain probability
Example: a dice can have values {1, .., 6}
a bit more formally: a random variable introduces a probability
measure on the domain (sample space) (“assigns a probability to each
possible value”)

• the domain dom(X) of a variable X is the set possible values of a
random varible (mutually exclusive and collectively exhaustive)

• we use capital letters X to denote random variables and lower case
letters x to denote values that they take

• we use the P to denote the mapping to probabilites

P (X = x) ∈ R 8/18



random variables (in terms of sets)
Let X be a random variable with domain Ω = dom(X)
Let A, B ⊂ Ω be subsets of the domain and x ∈ Ω a value in the
domain.

• X ∈ A or X ∈ B or X = x are called events

• we use the P to denote the mapping assigning events to real numbers:
– P (X ∈ A) ∈ R

• we require
– P (X ∈ ∅) = 0
– P (X ∈ Ω) = 1
– if A ∩B = ∅ then P (X ∈ A ∪B) = P (X ∈ A) + P (X ∈ B)

if the domain is discrete this implies
–

∑
x∈Ω P (X = x) = 1 9/18



probabilty distribution & tables
• for continuous domains: “probability distribution” is the integral of a

“probability density function”

• for discrete domains: “probability distribution” and “probability mass
function” are used synonymously

• a RV assigns a probability to each possible value
→ think of the probability distribution as a table of numbers:
Example: A fair dice X, dom(X) = {1, 2, 3, 4, 5, 6}, with

∀x∈dom(X) : P (X = x) =
1
6

corresponds to the table

[
1
6
,

1
6
,

1
6
,

1
6
,

1
6
,

1
6

]

• in implementations we typically represent random variables by tables
(arrays/vectors) of numbers
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Probability: Frequentist and Bayesian

• Frequentist probabilities are defined in the limit of an infinite number of
trials

• Example: The probability of a particular coin landing heads up is 0.43

• Bayesian (subjective) probabilities quantify degrees of belief

• Example: The probability of it raining tomorrow is 0.3

• Not possible to repeat tomorrow many times
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joint distributions
• assume we have two random variable X and Y . The joint probability

distribution

P (X = x, Y = y)

gives the probability that X =x and Y =y.
(In logic one would perhaps write something like X =x ∧ Y =y. But not
so in joint probability distributions.)

• Example: Suppose Toothache and Cavity are the variables:

Toothache = true Toothache = false

Cavity = true 0.04 0.06

Cavity = false 0.01 0.89

we write

P (Toothache = true, Cavity = false) = 0.01
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joint distributions

• note, the whole lecture will be about JOINT PROBABILITY
DISTRIBUTIONS
– graphical models are nothing but descriptions of joint probability
distributions!
– correlations, interdependence, coupling are all expressed in terms of
joint probability distributions
– whenever you’re confused about the “model”, the “approach”, the
“assumptions”, etc, reconsider explicitly what the joint probability
distribution over all involved variables is!
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joint distributions
• definitions:

– the marginal (probability) of X given P (X, Y ) is

P (X) =
X
Y

P (X, Y )

– the conditional (probability) of X given Y and P (X, Y ) is

P (X|Y ) =
P (X, Y )

P (Y )

defs also hold for tuples of variables, e.g., X = (X1, .., Xn), Y = (Y1, .., Ym)

• implications:
– the product rule P (X, Y ) = P (X|Y ) P (Y ) = P (Y |X) P (X)

– the chain rule P (X1, .., Xn) =
Qn

i=1 P (Xi|X1, .., Xi-1)

– Bayes Rule

P (X|Y ) =
P (Y |X)

P (Y )
P (X)
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Bayes Rule
• Thomas Bayes (1702–1761)
• Bayes Rule is a trivial implication of the definitions of marginal and

conditional probability!

• importance lies in its interpretation and use:

P (X|Y ) =
P (Y |X)
P (Y )

P (X) , posterior =
likelihood
evidence

prior

P (cause|effect) =
P (effect|cause)

P (effect)
P (cause)

Example: let M be meningitis, S be stiff neck

P (M |S) =
P (S|M)

P (S)
P (M) =

0.8
0.1

0.0001 = 0.0008

Note: posterior probability of meningitis still very small
Shows importance of the prior 15/18



inference

• we will deal with many variables X = (H1, ..Hn, E1, .., Em, Y1, .., Yk)
– we are given the joint probability distribution
P (H1, ..Hn, E1, .., Em, Y1, .., Yk)
– some variables E1, .., Em are observed (we have evidence)

for the other variables H1, ..Hn , Y1, .., Yk we have no evidence
we want to know the posterior over some variables Y1, .., YK

P (Y1:k |E1:m) =
P (Y1:k, E1:m)

P (E1:m)
∝

∑
H1:n

P (Y1:k, E1:m, H1:n) (1)

• this is the problem of inference

• obvious problem: size of table P (Y1:k, E1:m, H1:n) is dk+m+n
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summary

• focus of this lecture:
– graphical models as a generic tool for inference with coupled random
variables
– probability theory as calculus for uncertainty, information, evidence
– learning graphical models from data
– using graphical models for decision making & RL

• next time:
– naive Bayes
– graphical models
– inference using the elimination algorithm
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• web links:
Bayes Rule:
http://www.cs.ubc.ca/~murphyk/Bayes/bayesrule.html

Kevin’s lecture:
http://www.cs.ubc.ca/~murphyk/Teaching/CS532c_Fall04/Lectures/index.html

http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html

google site:http://www.cs.ubc.ca/~murphyk/Bayes
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