Acquisition and Analysis of Neuronal Data 2009 BCI - Lecture \#05

Carmen Vidaurre and Benjamin Blankertz

Machine Learning Laboratory, Berlin Institute of Technology
Fraunhofer FIRST (IDA)
vidcar@cs.tu-berlin.de
blankertz@cs.tu-berlin.de
17-Jul-2009

Today's Topic

Methods:

- Adaption of Fisher's Discriminant Classifier.
- In particular, iterative adaption of means and inverse (extended) covariance matrix.

Real world application:

- Classification of motor imagery conditions in a BCI paradigm.
- Update of the classifier to changes occuring during the experimental session.

Experimental Design

Subject sitting relaxed in a chair with armrests.
Visual cues (arrows) indicate which type of motor imagery is to be performed: left hand, right hand, right foot.
Every 15 trials, a break of 15 s is given. In total 105 trials of each motor imagery condition are recorded.

- Pause of several hours -

Visual cues are provided again.

Note: today's data is artificially modified to increase the difference between the two recordings.

Reminder: Subject-to-Subject Variability

■ Experiment: 6 subjects performed left vs. right hand finger tapping.
■ Even though the task involves a highly overlearned motor competence, the averaged brain patterns exhibit a great diversity between subjects:

- An optimal system needs adaption for each user.

Reminder: Session-to-Session Variability

■ Experiment: One subject imagined left vs. right hand movements on different days.
■ Even though each ERD map represents an average across 140 trials, they exhibit an apparent diversity.

- An optimal system needs adaption for (or within?) each session.

Reminder: Trial-to-Trial Variability

In this lesson we will take care of the changes within the session.
■ Experiment: One subject imagined left vs. right hand movements.

- Topographies show power in the alpha band during trials of 3.5 s .
- They exhibit an extreme diversity, although recorded from one subject on one day.

Why do we need to adapt?

EEG changes:

- Class related short-term changes: performance of different mental tasks.
- Class related long-term changes: due to feedback training (learning). Mean of the features.
- Class unrelated long-term changes: e.g. fatigue or lack of concentration. Co-Variance of the features.
■ Variation of other noise sources: e.g. changing impedance of the electrodes.

Reminder: Fisher's Discriminant Analysis

Let \mathbf{x}_{k} be feature vectors of two conditions (k in \mathcal{C}_{1} resp. \mathcal{C}_{2}) and define

$$
\begin{aligned}
\mu_{i} & =\frac{1}{\left|\mathcal{C}_{i}\right|} \sum_{k \in \mathcal{C}_{i}} \mathbf{x}_{k} \\
S_{i} & =\sum_{k \in \mathcal{C}_{i}}\left(\mathbf{x}_{k}-\mu_{i}\right)\left(\mathbf{x}_{k}-\mu_{i}\right)^{\top} \\
\mathbf{w} & =\left(S_{1}+S_{2}\right)^{-1}\left(\mu_{1}-\mu_{2}\right)
\end{aligned}
$$

Note: the vectors are column vectors.

Fisher's Discriminant: today's variation

Today we use a equivalent variation:

$$
\begin{aligned}
& S=\sum_{k \in C_{1}, C_{2}}\left(\mathbf{x}_{k}-\mu_{i}\right)\left(\mathbf{x}_{k}-\mu_{i}\right)^{\top} \\
& \mathbf{w}^{\prime}=S^{-1}\left(\mu_{1}-\mu_{2}\right) \\
& \mathbf{w}^{\prime}=\text { constant } \cdot \mathbf{w}
\end{aligned}
$$

With "some" mathematical effort one can show that the classification result with both variations is the same.

Reminder: FD for Classification

Let $\mathbf{x}_{k} \in \mathbb{R}^{m}$ be feature vectors of two classes ($k \in \mathcal{C}_{1}$ resp. $k \in \mathcal{C}_{2}$). Then the FD vector \mathbf{w} as defined above separates \mathbb{R}^{m} in two classes by virtue of the decision function:

$$
f: \mathbb{R}^{m} \rightarrow \mathbb{R} ; \quad \mathbf{z} \mapsto \begin{cases}-1 & \text { if } \mathbf{w}^{\top} \mathbf{z}+b<0 \\ 1 & \text { else }\end{cases}
$$

The bias can, e.g., be chosen as $b=-\mathbf{w}^{\top}\left(\mu_{1}+\mu_{2}\right) / 2$.
To estimate the bias in today's variation, we use the pooled mean instead of the average of the class means:

$$
\mu=\frac{1}{N} \cdot \sum_{k \in C_{1}, C_{2}} \mathbf{x}_{k}
$$

Note: FDA is equivalent to Linear Discriminant Analysis.

Mean estimation

Mean estimation of a stochastic (random) process $x(t)$: at $t, x(t)$ is observed, with N observations. The mean value estimate μ_{x} is

$$
\operatorname{mean}(x)=\mu_{x}=\frac{1}{N} \sum_{t=1}^{N} x(t)=E\langle x(t)\rangle
$$

For a time-varying estimation, we need a (sliding) window:

$$
\mu_{x}(t)=\frac{1}{\sum_{i=0}^{n-1} w_{i}} \sum_{i=0}^{n-1} w_{i} \cdot x(t-i) \quad t \geq n
$$

where n is the width of the window and w_{i} are the weighting factors.

Mean Estimation

Commonly: rectangular window, $w_{i}=1$

$$
\mu_{x}(t)=\frac{1}{n} \sum_{i=0}^{n-1} x(t-i) \quad t \geq n
$$

Recursive formula for the rectangular window approach:

$$
\mu_{x}(t)=\mu_{x}(t-1)+\frac{1}{n} \cdot(x(t)-x(t-n)) \quad t \geq n
$$

Need to keep the n past sample values in memory and an initial $\mu_{x}(0)$.

Mean Estimation

Next formula needs no memory of past values of x :

$$
\mu_{x}(t)=(1-U C) \cdot \mu_{x}(t-1)+U C \cdot x(t) \quad t \geq 1
$$

$U C=$ update coefficient of an exponential weighting window. One needs an initial estimate $\mu_{x}(0)$.

$$
w_{i}=U C \cdot(1-U C)^{i} \quad i \in\{0, \ldots, n-1\}
$$

with a time constant of $\tau=1 /\left(U C \cdot F_{s}\right)$ if the sampling rate is F_{s}.

Mean Estimation

Table: Computational effort of mean estimators (per dimension and time step).

Method	Memory effort	Computational effort
stationary	$\mathrm{O}(1)$	$\mathrm{O}(1)$
weighted sliding window	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
rectangular sliding window	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
recursive (only for rectangular)	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$
adaptive (exponential window)	$\mathrm{O}(1)$	$\mathrm{O}(1)$

Note: if the window length and $U C$ are properly chosen, a similar characteristic can be obtained.

Variance Estimation

The overall variance σ_{x}^{2} of $x(t)$ can be estimated with

$$
\operatorname{var}(x)=\sigma_{x}^{2}=\frac{1}{N} \sum_{t=1}^{N}\left(x(t)-\mu_{x}\right)^{2}=E\left\langle\left(x(t)-\mu_{x}\right)^{2}\right\rangle
$$

An adaptive estimator for the variance is this one

$$
\begin{equation*}
\sigma_{x}(t)^{2}=(1-U C) \cdot \sigma_{x}(t-1)^{2}+U C \cdot\left(x(t)-\mu_{x}(t)\right)^{2} \quad t \geq 1 \tag{2}
\end{equation*}
$$

One needs the initial $\sigma_{x}(0)^{2}$ and $\mu_{x}(1)$.
Note: this variance estimator is biased. In order to obtain an unbiased estimator, one must multiply the result by $N /(N-1)$.

Variance Estimation

Alternatively, one can also compute the mean square

$$
\sigma_{x}^{2}=\frac{1}{N} \sum_{t=1}^{N} x(t)^{2}-\mu_{x}^{2}
$$

This is the adaptive version:

$$
\begin{equation*}
M S Q_{x}(t)=(1-U C) \cdot M S Q_{x}(t-1)+U C \cdot x(t)^{2} \tag{3}
\end{equation*}
$$

One needs $M S Q_{x}(0)$ as initial condition.
The variance can be obtained by

$$
\begin{equation*}
\sigma_{x}(t)^{2}=M S Q_{x}(t)-\mu_{x}(t)^{2} \tag{4}
\end{equation*}
$$

Variance-Covariance Estimation

Remember FDA, the covariances between the various dimensions are of interest. The (stationary) variance-covariance matrix:

$$
\operatorname{cov}(x)=\boldsymbol{\Sigma}_{x}=\frac{1}{N} \sum_{t=1}^{N}\left(\boldsymbol{x}(t)-\boldsymbol{\mu}_{x}\right) \cdot\left(\boldsymbol{x}(t)-\boldsymbol{\mu}_{x}\right)^{\top}
$$

Variances: diagonal elements. Off-diagonal, element $S_{i, j}$ covariance between the i-th and j-th element.
An adaptive estimator of the covariance matrix:

$$
\boldsymbol{\Sigma}_{x}(t)=(1-U C) \cdot \boldsymbol{\Sigma}_{x}(t-1)+U C \cdot\left(\boldsymbol{x}(t)-\boldsymbol{\mu}_{x}(t)\right) \cdot\left(\boldsymbol{x}(t)-\boldsymbol{\mu}_{x}(t)\right)^{\top}
$$

t is the sample time, $U C$ is the update coefficient. Necessary $\boldsymbol{\Sigma}_{x}(0)$ and $\boldsymbol{\mu}(1)$.

Variance-Covariance Estimation

Estimating the covariance implies estimating mean values as well. To avoid this we define the extended covariance matrix (ECM) \boldsymbol{E} as

$$
\begin{array}{r}
E C M(x)=\boldsymbol{E}_{x}=\sum_{t=1}^{N_{x}}[1 ; \boldsymbol{x}(t)] \cdot[1 ; \boldsymbol{x}(t)]^{\top}=\left[\begin{array}{c|c}
a & \boldsymbol{b} \\
\hline \boldsymbol{c} & \boldsymbol{D}
\end{array}\right]= \\
=N_{x} \cdot\left[\begin{array}{c|c}
1 & \boldsymbol{\mu}_{x}^{\top} \\
\hline \boldsymbol{\mu}_{\boldsymbol{x}} & \boldsymbol{\Sigma}_{\boldsymbol{x}}+\boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{\top}
\end{array}\right] \tag{5}
\end{array}
$$

Variance-Covariance Estimation

From the ECM \boldsymbol{E} :
■ Number of samples $N=a$

- Mean $\boldsymbol{\mu}=\boldsymbol{b} / a$
- covariance matrix $\boldsymbol{\Sigma}=\boldsymbol{D} / a-(\boldsymbol{c} / a) \cdot(\boldsymbol{b} / a)$.

Adaptive ECM estimator:

$$
\begin{equation*}
\boldsymbol{E}_{x}(t)=(1-U C) \cdot \boldsymbol{E}_{x}(t-1)+U C \cdot[1 ; \boldsymbol{x}(t)] \cdot[1 ; \boldsymbol{x}(t)]^{\top} \quad t \geq 1 \tag{6}
\end{equation*}
$$

t is the sample time, $U C$ is the update coefficient. Necessary $E_{x}(0)$.
Typically $N=a=1$. For the exercise: remember to normalize initial conditions!!

Adaptive Inverse Covariance Matrix Estimation

FDA needs the computation of Σ^{-1}. We can estimate it with equation (7) and

$$
\boldsymbol{\Sigma}^{-1}=a \cdot\left(\boldsymbol{D}-\boldsymbol{c} \cdot a^{-1} \cdot \boldsymbol{b}\right)^{-1}
$$

Needs an explicit matrix inversion -> computational effort. But $\boldsymbol{\Sigma}^{-1}$ can be obtained without an explicit matrix inversion.
$i E C M=\boldsymbol{E}^{-1}=\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]^{-1}$ with the inverse of a block matrix

$$
\left[\begin{array}{c|c}
A^{-1}+A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\
\hline-S^{-1} C A^{-1} & S^{-1}
\end{array}\right]
$$

$$
=\left[\begin{array}{c|c}
1+\boldsymbol{\mu}_{x}^{\top} \boldsymbol{\Sigma}_{x}^{-1} \boldsymbol{\mu}_{x} & -\boldsymbol{\mu}_{x}^{\top} \boldsymbol{\Sigma}_{x}^{-\top} \tag{7}\\
\hline-\boldsymbol{\Sigma}_{x}^{-1} \boldsymbol{\mu}_{x}^{\top} & \boldsymbol{\Sigma}_{x}^{-1}
\end{array}\right]
$$

with $S=D-C A^{-1} B$

Adaptive Inverse Covariance Matrix Estimation

Now we obtain the adaptively estimated $i E C M=\boldsymbol{E}^{-1}$.
Applying the matrix inversion lemma to equation (8) $\boldsymbol{A}=(\boldsymbol{B}+\boldsymbol{U} \boldsymbol{D} \boldsymbol{V})$
The inverse is:

$$
\begin{align*}
\boldsymbol{A}^{-1} & =(\boldsymbol{B}+\boldsymbol{U} \boldsymbol{D} \boldsymbol{V})^{-1}= \\
& =\boldsymbol{B}^{-1}+\boldsymbol{B}^{-1} \boldsymbol{U}\left(\boldsymbol{D}^{-1}+\boldsymbol{V} \boldsymbol{B}^{-1} \boldsymbol{U}\right)^{-1} \boldsymbol{V} \boldsymbol{B}^{-1} \tag{8}
\end{align*}
$$

Adaptive Inverse Covariance Matrix Estimation

We identify the matrices in (10) as follows:

$$
\begin{aligned}
\boldsymbol{A} & =\boldsymbol{E}(t) \\
\boldsymbol{B}^{-1} & =(1-U C) \cdot \boldsymbol{E}(t-1) \\
\boldsymbol{U}^{\top}=\boldsymbol{V} & =\boldsymbol{x}(t) \\
\boldsymbol{D} & =U C
\end{aligned}
$$

$U C$: update coefficient, $\boldsymbol{x}(t)$: the current sample vector.
Substituting in Eq. 10 the adaptive inverse covariance matrix is:

$$
\begin{equation*}
\boldsymbol{E}(t)^{-1}=\frac{\left(\boldsymbol{E}(t-1)^{-1}-\frac{1}{\frac{1-U C}{U C}+\boldsymbol{x}(t)^{\top} \cdot \boldsymbol{v}} \cdot \boldsymbol{v} \cdot \boldsymbol{v}^{\top}\right)}{1-U C} \tag{9}
\end{equation*}
$$

with $\boldsymbol{v}=\boldsymbol{E}(t-1)^{-1} \cdot \boldsymbol{x}(t)$ and $\boldsymbol{x}(t)^{\top} \cdot \boldsymbol{v}$ is a scalar. You need an estimate of $\boldsymbol{E}(0)^{-1}$.

Adaptive Inverse Covariance Matrix Estimation

iECM can become asymmetric and singular. Avoid it like this:

$$
\begin{equation*}
\boldsymbol{E}(t)^{-1}=\frac{\left(\boldsymbol{E}(t)^{-1}+\boldsymbol{E}(t)^{-\top}\right)}{2} \tag{10}
\end{equation*}
$$

Now, the inverse covariance matrix $\boldsymbol{\Sigma}^{-1}$ can be obtained by estimating the extended covariance matrix and decomposing it according to equation (9).

Adaptive Inverse Covariance Matrix Estimation

For the usual covariance:

$$
\begin{equation*}
\boldsymbol{\Sigma}(t)^{-1}=\frac{\left(\boldsymbol{\Sigma}(t-1)^{-1}-\frac{1}{\frac{1-U C}{U C}+(\boldsymbol{x}(t)-\boldsymbol{\mu}(t))^{\top} \cdot \boldsymbol{v}} \cdot \boldsymbol{v} \cdot \boldsymbol{v}^{\top}\right)}{1-U C} \tag{11}
\end{equation*}
$$

with $\boldsymbol{v}=\boldsymbol{\Sigma}(t-1)^{-1} \cdot(\boldsymbol{x}(t)-\boldsymbol{\mu}(t))$ and $(\boldsymbol{x}(t)-\boldsymbol{\mu}(t))^{\top} \cdot \boldsymbol{v}$ is a scalar. You need an estimate of $\boldsymbol{\Sigma}(0)^{-1}$ and $\boldsymbol{\mu}(1)$. You need to reinforce symmetry as well.

Reminder: Training CSP-based Classification

- Determine most discriminative frequency band,

■ band-pass filter EEG in that band,

- extract single trials using the time interval in which ERD/ERS is expected,
- calculate and select CSP filters,

■ and apply them to EEG single trials,

- calculate the log variance within trials.

To obtain a low dimensional feature vector per trial.
-(The data of the exercise is pre-processed until here)-

- Train a linear classifier like Fisher's Discriminant on the features (w/o shrinkage).

Updating and applying the Classifier

Trial by trial:

- Compute features: filter in time (frequency band) and space (CSP filters), compute variance and log $->$ already pre-processed!
■ Update the trained classifier using the current test feature vector (note that you do not use class labels).
- Apply the new classifier in the next test feature vector.

We need some delay! Only apply the classifier to the features of the next trial.

