== Maschinelles Lernen I Wintersemester 2007/2008 == === Termine und Informationen === Es handelt sich um eine integrierte Vorlesung mit Übung. Dieser Kurs ist eine Basisveranstaltung. Siehe auch den [[https://lsf.zuv.tu-berlin.de/qisserver/servlet/de.his.servlet.RequestDispatcherServlet?state=wsearchv&search=2&veranstaltung.veranstid=85088|Eintrag im Vorlesungsverzeichnis]] ||'''Vorlesung'''||Donnerstags, 10 - 12 (ab 16.10.2008)|| ||'''Raum'''||FR 3002|| ||*Übung*||Donnerstags, 12 - 14 (ab 16.10.2008)|| ||'''Raum'''||FR 7039|| ||<(^|2>'''Dozenten'''||[[http://ml.cs.tu-berlin.de/en/klaus/index.html|Prof. Dr. Klaus-Robert Müller]]|| ||[[http://ml.cs.tu-berlin.de/~mikio|Dr. Mikio Braun]]|| ||<(^|2>'''Sprechzeiten'''||Prof. Dr. Klaus-Robert Müller: nach Vereinbarung|| ||Dr. Mikio Braun: nach Vereinbarung|| Es gibt eine [[http://groups.google.com/group/mikiobraun-lehre|Google group]], in der aktuelle Ankündigungen zur Vorlesung zu finden sind. Dort können auch Fragen gestellt werden (z.B. Fehler auf dem Aufgabenblatt). Man muß angemeldet sein, um die Inhalte lesen zu können, der Zugang ist jedoch jedem offen. === Themen === Die Vorlesung behandelt einführende Themen im Bereich des maschinellen Lernens. Im Einzelnen wird sich die Vorlesung mit den folgenden Themen beschäftigen: * Grundlagen Wahrscheinlichkeitstheorie * Maximum Likelihood Schätzer und Bayes'sche Inferenz * Hauptkomponentenanalyse * Faktoranalyse * K-means Clustering * Lineare Diskriminanzanalyse * K-nächste Nachbarklassifikation * Least Mean Squares Klassifikation * Fisher Diskriminanten * Regression * Modellselektion * Supportvektormaschinen * Radialbasisfunktionsnetze * Gauss'sche Prozesse Im Anschluss an die Vorlesung findet die Übung statt, in der die erlernten Methoden vertieft werden. === Vorkenntnisse === Kenntnisse in Linearer Algebra und Grundkenntnisse in Wahrscheinlichkeitsrechnungsind werden '''''vorausgesetzt'''''. Zur Lösung eines Teils der Hausaufgaben werden Kenntnisse in einer mathematischen/statistischen Software benötigt. Wir empfehlen die Benutzung von matlab bzw. octave. Letzteres ist unter [[http://www.octave.org|www.octave.org]] frei erhältlich. Matlab ist auf dem vom irb verwalteten System installiert und kann mit `/home/ml/ml/bin/matlab` gestartet werden. === Übungen === Die Übungsleistung geht in die Gesamtbenotung ein. Mindestens 50% der Übungen müssen bearbeitet werden, um zur abschließenden mündlichen Prüfung zugelassen zu werden. Einige Hinweise zu den Abgaben: 1. Die Lösungen zu theoretischen Aufgaben sind '''''handschriftlich''''' abzugeben. 1. Die praktischen Aufgaben werden über ein Webinterface abgegeben (wird jeweils bekanntgegeben). 1. Die Übungsblätter dürfen in Zweiergruppen bearbeitet und abgegeben werden, die Zusammensetzung sollte sich jedoch '''''nicht ändern'''''. Darüber hinaus beachtet bitte folgende Hinweise: * Die Lösungen sollten gut erklärt und strukturiert sein. Insbesondere sollte Programmcode auch ausreichend dokumentiert und den üblichen Konventionen entsprechend formatiert sein (z.B. Einrückungen). * Natürlich müssen die Lösungen selbst erarbeitet und niedergeschrieben werden. Selbst wenn man sich "Anregungen" besorgt hat, muß der Lösungsweg selbst verstanden und unabhängig niedergeschrieben werden. Wörtliche Kopien anderer Lösungen oder aus dem Internet sind ein Vergehen, für das entsprechende Konsequenzen vorgesehen sind. * Es kommt immer wieder vor, dass Studenten die Übungsaufgaben bearbeiten wollen, aber aus terminlichen Gründen nicht an der Übung selbst teilnehmen können. Bitte klärt das mit Eurem Übungsleiter ab und holt Eure Lösungen regelmäßig ab, um den Lernerfolg sicherzustellen. === Literatur und Links === Folgene Bücher geben eine umfassende Einführung in den Bereich des Maschinellen Lernens. * Christopher M. Bishop (2006) ''Pattern Recognition And Machine Learning'' , Springer. * Richard O. Duda, Peter E. Hart, David G. Stork (2001) ''Pattern Classification'' , Wiley (2. Auflage). * Trevor Hastie, Robert Tibshirani, Jerome Friedman (2001) The Elements of Statistical Learning, Springer. Folgende Bücher geben eine umfassende Einführung in die Wahrscheinlichkeitstheorie und in die Statistik. * G. Bamberg, F. Baur (2006) ''Statistik'', Oldenbourg-Verlag, 12. Auflage * L. Fahrmeir, R. Künstler, I. Pigeot, G. Tutz (2004) ''Statistik'' , Springer, 5. Auflage * L. Wasserman (2004) ''All of Statistics'', Springer Die wichtigsten Gleichungen für das Rechnen mit Matrizen und insbesondere die Ableitungsregeln für höherdimensionale Funktionen findet man hier: * K. B. Petersen, M. S. Pedersen (2007) ''The Matrix Cookbook''. Technical University of Denmark [ [[http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274|externer link]] ] === Weitere Unterlagen zur Vorlesung === '''Folien''' * [[attachment:mlintro.pdf|Introduction to Machine Learning]]: Übersicht übers Maschinelle Lernen * [[attachment:probtheo.pdf|Concepts of Probability Theory for Machine Learning]] * [[attachment:BayesianDecisionTheory.pdf|Bayesian Decision Theory and Parameter Estimation]] * [[attachment:vl_ica_tub-08.pdf|Independent Component Analysis (ICA)]] * [[attachment:crossvalidation.pdf|Model Selection and Cross-Validation]] * [[attachment:summary.pdf|Kurzübersicht über den behandelten Stoff]] '''Übungszettel''' 1. [[attachment:sheet01.pdf|Übungsblatt 1]] 1. [[attachment:sheet02.pdf|Übungsblatt 2]] 1. [[attachment:sheet03.pdf|Übungsblatt 3]] Aufgabe 3 war fehlerhaft und wird aus der Wertung genommen. Die Punktevergabe ist jetzt (Aufgabe 1: 9 Punkte, Aufgabe 2: 9 Punkte, Aufgabe 4: 12 Punkte) 1. [[attachment:sheet04.pdf|Übungsblatt 4]] [[attachment:sheet04.m|Programmskelett sheet04.m]] 1. [[attachment:sheet05.pdf|Übungsblatt 5]] [[attachment:sheet05_01.m|Programmskelett sheet05_01.m]] [[attachment:sheet05_02.m|Programmskelett sheet05_02.m]] 1. [[attachment:sheet06.pdf|Übungsblatt 6]] [[attachment:sheet06.m|Programmskelett sheet06.m]] 1. [[attachment:sheet07.pdf|Übungsblatt 7]] [[attachment:sheet07.m|Programmskelett sheet07.m]] 1. [[attachment:sheet08.pdf|Übungsblatt 8]] [[attachment:sheet08.m|Programmskelett sheet08.m]] 1. [[attachment:sheet09.pdf|Übungsblatt 9]] 1. [[attachment:sheet10.pdf|Übungsblatt 10]] [[attachment:sheet10.m|Programmskelett sheet10.m]] 1. [[attachment:sheet11.pdf|Übungsblatt 11]] [[attachment:sheet11.m|Programmskelett sheet11.m]] 1. [[attachment:sheet12.pdf|Übungsblatt 12]] [[attachment:sheet12.m|Programmskelett sheet12.m]] [[attachment:sheet12_data.m|Daten sheet12_data.m]] 1. [[attachment:sheet13.pdf|Übungsblatt 13]] 1. [[attachment:sheet14.pdf|Übungsblatt 14]] [[attachment:sheet14.m|Programmskelett sheet14.m]] [[attachment:sheet14_data.m|Daten sheet14_data.m]] -- [[Main/MikioBraun]] - 19 Sep 2008