Independent Component Analysis (ICA)

Klaus-Robert Müller

Blind Source Separation

applications:

cocktailparty problem, biomedical measurements (EEG, MEG), etc.

question:

decomposition & analysis of superimposed signals, robust denoising.

Acoustic Demo: "Cocktail party"

- 3 mixed signals (music, speech, street noise)
 x(t) = As(t)
- problem: **demixing**!

microphones $\mathbf{x}(t)$ measure **unknown** mixtures of **unknown** (sound) sources

 $\mathbf{x}(t) = \mathbf{A} \, \mathbf{s}(t)$

assumption: statistical independence of the source signals (ICA)

Ansatz: invert mixing process **A** by **learning** of **W** and enforce statistical independence of unmixed signals **u**(t)!

 $\mathbf{u}(t) = \mathbf{W} \mathbf{x}(t)$

assumption: statistical independence of sources

$$p(\boldsymbol{u}) = \prod_{i=1}^n p_i(u_i)$$

•higher cross-moments should vanish

•minimize distance between distributions

$$D(\mathbf{W}) = \int p(\boldsymbol{u}) \log \left(rac{p(\boldsymbol{u})}{\prod\limits_{i=1}^{n} p_i(u_i)}
ight) d\boldsymbol{u}$$

problem: how to obtain distributions in practice?

Gram Chalier expansion:

$$p_i(u_i) \sim \frac{1}{N} e^{-(u_i)^2/2} \left(1 + \frac{m_i^{(3)}}{3!} H_3(u_i) + \frac{[m_i^{(4)} - 3]}{4!} H_4(u_i) + \dots \right)$$

Edgeworth expansion:

$$p_{i}(u_{i}) \sim \frac{1}{N} e^{-(u_{i})^{2}/2} \left(1 + \frac{m_{i}^{(3)}}{3} H_{3}(u_{i}) + \frac{m_{i}^{(4)}}{4} H_{4}(u_{i}) + \frac{10}{6} (m_{i}^{(3)})^{2} H_{6}(u_{i}) + \frac{1}{5} m_{i}^{(5)} H_{5}(u_{i}) + \frac{35}{8} m_{i}^{(3)} m_{i}^{(4)} H_{7}(u_{i}) + \frac{1}{5} \dots\right)$$

where $m_i^{(k)}$ is kth order moment of u_i and $H_k(u_i)$ are Chebyshev-Hermite polynomials (order k).

after tedious but straight forward calculation, we get

$$D(\mathbf{W}) \sim -\int p(\boldsymbol{x}) \log(p(\boldsymbol{x})) - \log \|\det(\mathbf{W})\| + \frac{n}{2} \log(2\pi e) + \dots$$

$$-\sum_{i=1}^{n} \left[\frac{(m_i^{(3)})^2}{2 \cdot 3!} + \frac{[m_i^{(4)} - 3]^2}{2 \cdot 4!} - \frac{5}{8} (m_i^{(3)})^2 [m_i^{(4)} - 3] + \dots$$

$$-\frac{1}{16} [m_i^{(4)} - 3]^3]$$

gradient descent in D(W) with respect to W yields

$$\frac{d\mathbf{W}}{dt} = \eta(t)\{\mathbf{I} - \mathbf{f}(\mathbf{U})\mathbf{U}^T\}\mathbf{W} \quad (\text{e.g. Amari et al. 96})$$
$$f(u) = 3/4u^{11} + 25/4u^9 - 47/4u^5 + 29/4u^3.$$

"Blind" Source Separation with Temporal Information

model:
$$\mathbf{x}(t) = \mathbf{A} \mathbf{s}(t), \qquad \mathbf{u}(t) = \mathbf{W} \mathbf{x}(t)$$

define covariance matrices over time:

$$\mathbf{V} = \langle \boldsymbol{x}_t \boldsymbol{x}_t^T \rangle \qquad \mathbf{V}_\tau = \langle \boldsymbol{x}_t \boldsymbol{x}_{t-\tau}^T \rangle \qquad \forall i \neq j,$$

assumption: s has significant autocorrelation

algorithm: TDSEP minimizes error

$$L\{\mathbf{W}\} = \sum_{i \neq j} \langle u_i(t)u_j(t) \rangle^2 + \sum_{\{\tau\}} \langle u_i(t)u_j(t-\tau) \rangle^2$$

solution: linear algebra vs. gradient descent

simultaneous diagonalisation of $\{\mathbf{V}, \mathbf{V}_{\tau}, \ldots\}$

Whitening and Jacobi Rotations I

whitening transformation ${\bf K}$ is e.g. determined as inverse square root of the covariance matrix

$$\mathbf{K} = \langle \boldsymbol{x} \boldsymbol{x}^T \rangle^{-\frac{1}{2}} = (\boldsymbol{v} \wedge \boldsymbol{v}^T)^{-\frac{1}{2}} = \boldsymbol{v} \wedge^{-\frac{1}{2}} \boldsymbol{v}^T.$$

then approximative simultaneous diagonalisa-tion of transformed time-delayed covariance matrix

$$\mathbf{V}_{\tau(\boldsymbol{z})} = \langle \boldsymbol{z}_t \boldsymbol{z}_{t-\tau}^T \rangle = \boldsymbol{Q}^T \, \mathbf{V}_{\tau(\boldsymbol{s})} \, \boldsymbol{Q} = \boldsymbol{Q}^T \Lambda_{\tau} \, \boldsymbol{Q}.$$

solution:
$$\mathbf{A} = \mathbf{K}^{-1} \boldsymbol{Q}$$

model: $\mathbf{x}(t) = \mathbf{A} \mathbf{s}(t)$ $\mathbf{u}(t) = \mathbf{W} \mathbf{x}(t)$

higher order statistics (expansions)

$$\frac{d\mathbf{W}}{dt} = \eta(t)\{\mathbf{I} - \mathbf{f}(\mathbf{U})\mathbf{U}^T\}\mathbf{W} \quad (\text{e.g. Amari et al. 96})$$
$$f(u) = 3/4u^{11} + 25/4u^9 - 47/4u^5 + 29/4u^3.$$

second order statistics & temporal information

$$L\{\mathbf{W}\} = \sum_{i \neq j} \langle u_i(t) u_j(t) \rangle^2 + \sum_{\{\tau\}} \langle u_i(t) u_j(t-\tau) \rangle^2$$

(simultaneous diagonalisation of matrices, TDSEP)

• 3 mixed signals (music, speech, street noise)

 $\mathbf{x}(t) = A\mathbf{s}(t)$

- problem: music signal has very small amplitude, i.e. hidden signal
- question: which music instrument?
- mixed signal

 Image: Additional of the second sec

Cf. cerebral cocktail party problem

• 2 mixed signals (real room = convolution)

Acoustic Demo IV

• adaptive source separation: 2 mixtures

Nonlinear source separation

An ICA Analysis of Non-invasively Recorded DC-fields in Humans

Klaus-Robert Müller, Andreas Ziehe, Gerd Wübbeler,

Bruno-Marcel Mackert, Lutz Trahms, Gabriel Curio

Fraunhofer FIRST Berlin & Universität Potsdam, klaus@first.fhg.de

AG Neurophysics, Charite Berlin

and PTB Berlin

Cortical Signals

- brain works distributed and parallel
- idea: discriminate "speakers in brain"
- signal processing problem analog to

Cocktailparty problem

- **GOAL**: identification and extraction of small brain signals despite of noise (external or physiological "noise", i.e. background activity)
- denoised signals as basis for neurophysiological modeling
- challenge for signal processing, time series prediction and machine learning
- reliability of the analysis
- relevant signals are often extremely weak compared to the noise, i.e. a factor of 10000!

Setup: shielded MEG chamber

Why do we measure magnetic fields?

Magnetic fields show brain activity:

single neurons depolarize \rightarrow synchronous active neuron populations alow a non-invasive monitoring of macroscopic currents.

MEG positioning near the auditory cortex

Analysis of DC MEG

Paradigm: acoustic stimulation by presentation of alternating periods of music and silence, each for 30 s;

Non-invasive measurements of magnetic fields over the left auditory cortex for 30 min with 49 channel SQUID gradiometer

mechanical horizontal modulation of the body position with a frequency of 0.4 Hz,

- transposes DC magnetic field into higher frequency to improve the signal-tonoise ratio

data: reconstructed DC magnetic fields, sampling with modula-tion frequency 0.4 Hz \rightarrow 720 points/channel for 30 minutes

measured data ordered according to sensor position.

Several ICA Components

Comparing three Algorithms

Overview

Overview IDA activities

Introduction to ICA and blind source separation

Reliability and BSS

Non Gaussian Component Analysis

Overview IDA activities

Introduction to ICA and blind source separation

Reliability and BSS

Non Gaussian Component Analysis

Overview IDA activities

Introduction to ICA and blind source separation

Reliability and BSS

Non Gaussian Component Analysis

Synchronization and BSS

Conclusions

- efficient and elegant algorithms for linear blind source separation
- reliability analysis of ICA/BSS
- non-Gaussian Component Analysis
- nonlinear BSS (kernel-based methods, Gaussianization, ...)
- applications

