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Choosing Free Parameters

Many learning algorithms have “free parameters”,
for example

I Regularization constants

I Selection of basis functions / kernels

I preprocessing

Choosing such parameters based on the training
error alone will usually not work, because more
complex models will invariably lead to smaller
training error.



For example, if we fit with polynomials of degree d ,
the fit error will decrease monotonically.

(plot)



Therefore, we need a reliable measure, to estimate
the expected risk

In the following:

I cross-validation

I correction terms



Overfitting from a Statistical Perspective

The main problem is, abstractly speaking, that in
general

min
h∈H

1

n

n∑
i=1

h(Xi) < E (h(X )).



Based on the specific realization, the inequality does
not have to hold, but

min
h∈H

1

n

n∑
i=1

h(Xi) ≤
1

n

n∑
i=1

h(Xi)

for each h ∈ H, and therefore

lim
n→∞

min
h∈H

1

n

n∑
i=1

h(Xi) ≤ E (h(X )).



An extreme example

Consider identical dice.

Assume you suspect that the dice are loaded and
you want to select the one giving the smallest
number of pits.

You try each dice once and take the one with the
smallest result. But all dice are equal.



Test Sets

The expected risk can be estimated reliably on an
independent sample:

You train on X1, Y1, . . . , Xn, Yn and get f , and then
compute

R̂′(f ) =
1

m

m∑
i=1

L(f (X ′
i ), Y

′
i ).

Where X ′
1, Y

′
1, . . . , X

′
m, Y ′

m are i.i.d. samples from
the same distribution as the Xi , Yi .

You can always obtain an independent sample by
splitting your data set!



k-Fold Cross-Validation

k-fold cross-validation (cv) is a method to estimate
suitable values for free parameters of a learning
method.

It is in general quite computationally intensive and
does not work well for small data sets (up to a few
hundred points).



k-Fold Cross-Validation
Split a data set k times (for example k = 5):

1 2 3 4 5

For a fixed choice of parameters, iterate k times:
Train on k − 1 parts, and evaluate on the remaining
part:

Iteration 1: train on 2 3 4 5 , test on 1

Iteration 2: train on 1 3 4 5 , test on 2

Iteration 3: train on 1 2 4 5 , test on 3

Iteration 4: train on 1 2 3 5 , test on 4

Iteration 5: train on 1 2 3 4 , test on 5



k-Fold Cross-Validation

You obtain k estimates R̂1, . . . , R̂k for each
possible parameter choice.

Repeat the procedure for a number of choices and
choose the one with the smallest estimated risk (on
average, median, etc.)



Issues with cross-validation

Note that the CV test error is again too optimistic.

As a general rule:

Risk estimates are only reliable if no se-
lection based on the estimates have been
performed!

 For assessment of the selected models, we need
a further validation set.



Issues with CV: computational demands

I Note that for each parameter candidate, you
have to train and evaluate k times.

I CV scales exponentially with the number of free
parameters if you perform simple grid search.

I For some algorithms, it is possible to compute
leave-one-out cross-validation (i.e. k = n) more
efficiently.



Issues with CV: choice of k

I For small k , the training set is much smaller
than the original data set. Therefore, the test
error is biased (meaning that it’s expectation is
not the real test error)

I For large k , the bias becomes small (for k = n,
the estimator is asymptotically unbiased), but
the test error has a high variance, because the
error is estimated from only a few points.

I Typically, on chooses k somewhere between 5
and 10.



A Final Word on Preprocessings

The rule that the risk estimates are only reliable if
no selection is performed based on the risk also
extends to preprocessings:

Risk estimates are only reliable if the infor-
mation in the test data set has not been
used in any way.

This in particular includes preprocessing such as
denoising.



WRONG

I Denoise whole data set

I Split data set to perform cross-validation

I ...

CORRECT

I Split data set to perform cross-validation

I Denoise training set

I Learn classifier

I For prediction, denoise test set using the same
parameters as on the training set

I Predict on denoised data

I ...



Correcting the Prediction Error

I We’ll assume for now, that the x1, . . . , xn are
fixed, and only the Y1, . . . , Yn have noise.

I We also consider the quadratic loss only for
now.

I In this setting, the difference between training
and test error can be analyzed much better.



We are interested in comparing the two quantities:

I The expected test error:

E (R̂′(f̂ )) = E

[
1

n

n∑
i=1

(Y ′
i − f̂ (xi))

2

]

where the Y ′
i is another independent sample of

labels. Note that f̂ depends on all the Xi , Yi ,
but not on the Y ′

i .

I The expected training error:

E (R̂(f̂ )) = E

[
1

n

∑
i=1

(Yi − f̂ (xi))
2

]



Optimism of the Training Error

The optimism op is defined as

op = E (R̂′(f̂ ))− E (R̂(f̂ )).

It holds that

op =
2

n

n∑
i=1

Cov(Yi , f̂ (xi)).



Proof

It holds that

op =
1

n

n∑
i=1

E
[
(Y ′

i − f̂ (xi))
2 − (Yi − f̂ (xi))

2
]
.

We first consider the term in the expectation:

(Y ′
i − f̂ (xi))

2 − (Yi − f̂ (xi))
2 =

Y ′
i
2 − 2Y ′

i f̂ (xi) + f̂ 2(xi)− Y 2
i + 2Yi f̂ (xi)− f̂ 2(xi),

and the f̂ 2(xi) terms cancel out.



Next, we take the expectation

E (Y ′
i
2
)− 2E (Y ′

i f̂ (xi))− E (Y 2
i ) + 2E (Yi f̂ (xi)).

Now, note that Y ′
i and Yi have the same

distribution, therefore E (Y ′
i
2) = E (Y 2

i ).

Furthermore, E (Y ′
i f̂ (xi)) = E (Y ′

i )E (f̂ (xi)), because
f does not depend on the Y ′

i .

= 2E (Yi f̂ (xi))− 2E (Yi)E (f̂ (xi)) + E (Y 2
i )− E (Y 2

i )

= 2Cov(Yi , f̂ (xi)).

�



In summary,

expected test error =

expected training error +
2

n

n∑
i=1

Cov(Yi , f̂ (xi)).

The stronger the dependency between f̂ (xi) and Yi ,
the stronger the optimism of the training error.



Linear Learning Methods

For linear methods where the predictions on the
training set depend linearly on the input labels, the
covariance can be computed exactly.

For example, the least squares regression algorithm
learns a function of the form

f (x) =
d∑

j=1

αjφj(x),

where φj are appropriate basis functions
(coordinates, polynomials, etc.).



Linear Learning Methods

For such methods, we have seen that the α which
minimizes the quadratic loss can be computed in
closed form as

α = AY ,

where Y = (Y1, . . . , Yn), and A is some matrix.

The in-sample predictions Ŷ = (f̂ (x1), . . . , f̂ (xn))
are then given by

Ŷ = ΦAY = SY “hat matrix”

where Φij = φj(xi), for 1 ≤ i ≤ n, 1 ≤ j ≤ d .



We assume that

f (x) = Yi + εi ,

where the εi are i.i.d. normally distributed with
mean zero and variance σ2

ε .

(This is a standard setup for regression).

If Ŷ = SY , then

n∑
i=1

Cov(Yi , Ŷ ) = trace(S)σ2
ε .



Proof

Note that
∑n

i=1 Cov(Yi , Ŷi) = trace Cov(Y , Ŷ ),
and

Cov(Y , Ŷ ) = E (Y Ŷ t)− E (Y )E (Ŷ )t .

Let us define

F = (f (x1), . . . , f (xn)),

ε = (ε1, . . . , εn)

such that Y = F + ε, Ŷ = S(F + ε).



Then:

E (Y Ŷ t) = E (YY tS t) = E ((F + ε)(F + ε)tS t)

= FF tS t + E (εεt)S t + E (ε)F tS t + FE (ε)tS t .

Note that E (ε) = 0, and that E (εεt) = σ2
ε I .

Now,

Cov(Y , Ŷ ) = E (Y Ŷ t)− E (Y )E (Ŷ )t

= FF tS t + σ2
εS

t − FF tS t = σ2
εS

t .

�



Comments

I For the unregularized case, trace(S) = d , the
number of basis functions.

I For this reason, trace(S) is also often called
the effective degrees of freedom

I Also for non-linear methods, a similar quantity
can be defined by

df = E

[
trace

(
∂Ŷ

∂Y

)]

(again for fixed xi).



Correcting the Optimism
of the training error for linear learning methods

The idea is to estimate op and then get an estimate
of the true test error by adding it to the training
error.

It holds that

E (R̂′(f̂ )) = E (R̂(f̂ )) +
2

n

n∑
i=1

Cov(Yi , f̂ (xi))

= E (R̂(f̂ )) +
2

n
trace(S)σ2

ε .

We need estimates for E (R̂(f̂ )) and σ2
ε .



The Cp-statistics

I We estimate the expected training error by the
training error we actually observe.

I In order to estimate the noise, one typically
takes a “low-bias” model. Practically, one
takes a complex model and estimates

σ̂2
ε =

R̂(f̂ )

n − trace(S)
.

Resulting estimator:

Cp = R̂(f̂ ) +
2

n
trace(s)σ̂2

ε .



Comments

I We have only discussed the case where the xi

are fixed, but actually we are interested in the
error on new samples.

I Nevertheless, the criterion often works, because
the relative performance differences are
predictive for the true performance differences.



Related Methods
I AIC (Akaike Information Criterion)

AIC = −2loglik +
2d

n
.

More general than the Cp statistic, but
identical for the setting discussed.

I BIC (Bayesian Information Criterion)

BIC = −2loglik + (log n)d .

For our setting:

BIC =
n

σ2

(
R̂(f̂ ) + (log n)

d

n

)
.



Summary

I Free parameters and other model choices
cannot be chosen based on the training error
alone.

I Cross-validation as a generic method.

I Optimism-correcting criteria for certain models.

I Never rely on performance measures on
data you have used in the learning
process.


