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Some Definitions
An arbitrary classification task:

e Input/observation: feature vector x € X.

e X is an abstraction of a real-world object.
e Frequently, the input space is X = R?

e Output/explanation: random variable of interest y € ).
e Binary classification Y = {+1, —1}.

e Multi-class classification Y = {1,2,3,...,k}

Assumption: We know the joint probability distribution p(x, y) = p(x|y)p(y)
Approach:

P(explanation|observation) x P(observation|explanation) x P(explanation)




Example

A particular classification task: Classify messages as spam or ham.

e Xxi: occurence of the word Aachen

e Observations: Messages translated into feature vectors x € BY.
e Eg,x=(x1,x2,...,%q) may be a bag-of-words encoding
e x»: occurence of the word Aar

° ;<d3 occurence of the word ZZ-TOP
e Class labels: Y = {+1,—1}.

e +1: instance is spam
e —1: instance is ham

Assumption: We know the join probability distribution p(x, y) = p(x|y)p(y)
Approach:

P(explanation|observation) o P(observation|explanation) x P(explanation)




Bayes' Theorem
P(explanation|observation) o P(observation|explanation) x P(explanation)
Bayes' Theorem:

Pyl = PP
We call ...
° P(y\ ) the posterior probability,
P(x|y) the likelihood,
P(y) the prior probability, and
P(x) =

Zye-y P(x|y)P(y) the evidence




Decision Rules
Decision Rule

class label y € V.

A decision rule is a function f : X — ) that assigns each input x € X’ to a

Pyl = PP

A decision y for a given x is incorrect if yie 7 ¥. In a 2-class scenario we have,

P(error|x) = { P(+1]x) : yime = —1

P(=1|x) : Yerue = +1,
Obviously, it holds: P(correct|x) =1 — P(error|x).




error?

The Bayes' Decision Rule

How do we find a good decision rule, that is, one that minimizes the expected

P(error) :/ P(error|x)p(x) dx.
xeX
If P(error|x) is as small as possible for every x = the integral must be as small
as possible!
The Bayes decision minimizes P(error) and can simply be stated as

y= argmaxyeyP(y|x)
In other words: Decide in favor of the most probable class!




Bayes' Rule and Decision Boundaries

Bayes’ decision rule:

fBayes(x) = argmaxyEyP(y|x)
class labels,

The Bayes decision 5% induces regions X, in input space, associated with
Xy = {x: FP%(x) = y}
The decision boundary between classes y and y’ is given by the set

By, ={x: P(ylx) = P(y'Ix)},

Vy,y' €y




Bayes Decision Rule in Practice
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Example with 3 classes.



Problem-dependent Misclassification Costs
classes.

Until now, confusing classes cause constant errors irrespectively of the involved

Sometimes, certain errors are more severe than others.

e YV = {AlleKontrollleuchtenImGruenenBereich, Kernschmelze}
e YV = {gesund, krank}

o YV = {spam, ham}

Example:

Solution: Introduce loss (or cost) function £:Y x ¥ — {R* U0}.

‘ ¥ = spam
Yirue = spam L(H,H)=0
VYtrue = ham

S,
¢(H,S)=1000 (S

Drawback: How to define £ for a problem at hand?




Example for 2-classes

Define the class-based risks:

r(+1,x) = £(+1,+1)P(+1|x) + £(+1, —1)P(—1|x)

r(=1,x) = (=1, +1)P(+1[x) + £(—1, 1) P(—1]x)
Decide for class +1 if r(+1,x) < r(—1,x), that is,

(4(_1, 1) — (41, +1))P(+1|x) > (e(+1, ~1) - 4(-1, —1))P(—1|x)

For the 0/1-loss, defined as ¢(a, b) = 1 if a # b and 0 otherwise, we resolve the
minimum-error decision: Decide class +1 if

P(+1]x) > P(—1]|x).




Discriminants for Gaussian Distributed Classes

Bayes’ decision rule relies on

B p(x|y)P(y)
PO = = o )PG)

Recall that a minimum-error classification can also be achieved by

f,(x) = log p(x|y) + log P(y).
Let p(x|y) ~ N(p,, Zy)

- d
f;/(x) = _E(X - I‘l'y)lzy 1(X - "l'y) - 5 Iog 27 —

1
5 log |Zy| +log P(y)




Case 1: Independent Features
1
fy(x) = )

_ d 1
(x = p,)'T,  (x = ) — - log2m — - log |%,| + log P(y)
Consider the simple case ¥, = o1 for all y € Y
o Features are statistically independent and have the same variance
e Equal sized hyperspherical clusters centered around the p,.

= Determinant |X| = ¢*?, inverse ¥ ' = (1/5°)1

Obtain linear discriminant function:

() = —5 5 llx — i, I+ log P(y)

1
— 55 XX = 2px + ] + log P(y)
1

=Wy

1
X+ (—ﬁu’yuy + log P(y))
|

=:by
!
=w,x+ by




Case 2: Identical Covariance Matrices

1 - d
(%) = =5 (x— 1) T, (x — p,) — 7 log 27 — ~ log [T,| + log P(y)
Consider the simple case ¥, = ¥ for all y € Y

e Hyperellipsoidal clusters of equal size and shape, centered around the u,
= Again, |X| and (d/2)log 27 can be ignored.
Obtain linear discriminant function:

fy(x) =

2

(x— p,) T (x— p,) +log P(y)

——

1 f—— ! — /s —

= 3T = 2T T ] + log P(y)

- 1,

=y lu/nyr(*Eu;,Z luy+|0gp()’))
:Wy

=:by
!
= w,Xx+ by




Resulting Decision Rule

f,(x) =wyx+b,, Vyey
Compute the resulting decision as follows.

e Multi-class case, Y = {1,2,3,...,k}
y="Ff(x)= argmaxyeyfy(x)
e Binary case, Y = {41, —1}, decide +1 if

Fra(x) > £1(x)
WX+ by > w o x+ by

WX+ by —wyx—b_; >0

(Wi1 —w_1)'x+ (b1 —b1) >0

| —

=w =:b
wx+b>0,

and —1 otherwise.




Linear Discriminant Functions
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Left: Posterior class distribution. Right: Decision boundary.



Parameter Estimation




Parameter Estimation

Recall: p(x,y) = p(x|y)P(y).

Bayes’ decision rule only applicable when P(y) and class-conditional densities
p(x|y) are known.

In general, P(y) and p(x|y) are unknown in practical applications!

Instead, we are given a set of (training) samples D drawn independent and
identically distributed (iid) from p(x, y).

D= {(X17y1)7 (X27y2)7 [ERE) (me")}

Task: Use this sample to estimate P(y) and p(x|y)!
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Estimating the Prior

Given: iid training sample of size n,

D = {(x1,y1), (x2,%2), .-, (Xn, ¥n)}

Task: Estimate prior P(y). Solve by simply counting:

e How many times have we seen label y in the training set?
e Normalize to obtain probabilities!

S Ty
P(y): 1 *lyi=yl

., WEY
The larger the sample size n, the better will be the estimate IS( ).




Estimating the Class-conditional Densities

Given: iid training sample of size n,

D = {(Xl,_)/l)’ (Xz,yg), e (Xn,_)’n)}

Task: Estimate class-conditional p(x|y).

Difficult for several reasons:
e X is usually high-dimensional, often #dimensions > n
e => density estimation will be poor in sparse regions
= We need assumptions!
e E.g., density to be estimated is Gaussian with unknown g and X

e Instead of inferring an unknown function p(x|y) now only parameters need
to be estimated!

e — Maximum likelihood!
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Maximum Likelihood

Given: class-conditional density p(x|y;6,) in parametric form, iid sample D
Task: Find parameters 6, such that the likelihood of the data is maximized

Assume further that the 6, are functionally independent
= Deal with each class separately and simplify notation

For each class y let D, = {x: (x,y¥) € D, y = y} such that
D, = {x1,X2,...,Xm}

Since D (and hence also D) are drawn iid, we have

p(Dy|6y) ﬁp (xil6,)
i=1




Maximum Likelihood
Maximize the likelihood p(D|0) =TT, p(xi|0) by finding parameters

0 = (01,...,04) that agree with the data.
Log-likelihood:

log L(0) = log p(D,[0) = _ log p(xi|6)
i=1
Compute partial derivatives

OlogL OloglL

Odlog L
86, 7 90, T 00,
and find optimal 6™ by solving
Olog L Lo OloglL 1 OlogL 1
00, 7 00, T o




ML Example: Multivariate Normal
Example:
1 _
log p(xip, T) = — log{(2m)[Z|} — 5 (xi — u)' =7} (xi — 1)
Differentiate wrt p
9 log p(xi|p,

T) _

o =X (xi—p)

= The optimal [t must satisfy

Zz Y(xi— 1) =0

Multiplying with ¥ and re-arranging the terms leads to

3\'—‘

-
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