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Some Definitions

An arbitrary classification task:

• Input/observation: feature vector x ∈ X .
• x is an abstraction of a real-world object.
• Frequently, the input space is X = Rd

• Output/explanation: random variable of interest y ∈ Y.
• Binary classification Y = {+1,−1}.
• Multi-class classification Y = {1, 2, 3, . . . , k}.

Assumption: We know the joint probability distribution p(x, y) = p(x|y)p(y)

Approach:

P(explanation|observation) ∝ P(observation|explanation)× P(explanation)



Example

A particular classification task: Classify messages as spam or ham.

• Observations: Messages translated into feature vectors x ∈ Bd .
• E.g., x = (x1, x2, . . . , xd )′ may be a bag-of-words encoding.
• x1: occurence of the word Aachen
• x2: occurence of the word Aar

...
• xd : occurence of the word ZZ-TOP

• Class labels: Y = {+1,−1}.
• +1: instance is spam
• −1: instance is ham

Assumption: We know the join probability distribution p(x, y) = p(x|y)p(y)

Approach:

P(explanation|observation) ∝ P(observation|explanation)× P(explanation)



Bayes’ Theorem

P(explanation|observation) ∝ P(observation|explanation)× P(explanation)

Bayes’ Theorem:

P(y |x) =
P(x|y)P(y)

P(x)

We call ...

• P(y |x) the posterior probability,

• P(x|y) the likelihood,

• P(y) the prior probability, and

• P(x) =
P

ȳ∈Y P(x|ȳ)P(ȳ) the evidence.



Decision Rules

Decision Rule
A decision rule is a function f : X → Y that assigns each input x ∈ X to a
class label y ∈ Y.

P(y |x) =
P(x|y)P(y)

P(x)

A decision ŷ for a given x is incorrect if ytrue 6= ŷ . In a 2-class scenario we have,

P(error |x) =


P(+1|x) : ytrue = −1
P(−1|x) : ytrue = +1,

Obviously, it holds: P(correct|x) = 1− P(error |x).



The Bayes’ Decision Rule

How do we find a good decision rule, that is, one that minimizes the expected
error?

P(error) =

Z
x∈X

P(error |x)p(x) dx.

If P(error |x) is as small as possible for every x ⇒ the integral must be as small
as possible!

The Bayes decision minimizes P(error) and can simply be stated as:

ŷ = argmaxy∈YP(y |x)

In other words: Decide in favor of the most probable class!



Bayes’ Rule and Decision Boundaries

Bayes’ decision rule:

f Bayes(x) = argmaxy∈YP(y |x)

The Bayes decision f Bayes induces regions Xy in input space, associated with
class labels,

Xy = {x : f Bayes(x) = y}

The decision boundary between classes y and y ′ is given by the set

By,y′ = {x : P(y |x) = P(y ′|x)}, ∀y , y ′ ∈ Y



Bayes Decision Rule in Practice
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Problem-dependent Misclassification Costs

Until now, confusing classes cause constant errors irrespectively of the involved
classes.

Sometimes, certain errors are more severe than others.

• Y = {AlleKontrollleuchtenImGruenenBereich, Kernschmelze}
• Y = {gesund , krank}
• Y = {spam, ham}

Solution: Introduce loss (or cost) function ` : Y × Y → {R+ ∪ 0}.
Example:

ŷ = spam ŷ = ham
ytrue = spam `(H, H) = 0 `(S , H) = 1
ytrue = ham `(H, S) = 1000 `(S , S) = 0

Drawback: How to define ` for a problem at hand?



Example for 2-classes

Define the class-based risks:

r(+1, x) = `(+1, +1)P(+1|x) + `(+1,−1)P(−1|x)
r(−1, x) = `(−1, +1)P(+1|x) + `(−1,−1)P(−1|x)

Decide for class +1 if r(+1, x) < r(−1, x), that is,“
`(−1, +1)− `(+1, +1)

”
P(+1|x) >

“
`(+1,−1)− `(−1,−1)

”
P(−1|x)

For the 0/1-loss, defined as `(a, b) = 1 if a 6= b and 0 otherwise, we resolve the
minimum-error decision: Decide class +1 if

P(+1|x) > P(−1|x).



Discriminants for Gaussian Distributed Classes

Bayes’ decision rule relies on

P(y |x) =
p(x|y)P(y)P

y′∈Y p(x|y ′)P(y ′)

Recall that a minimum-error classification can also be achieved by

fy (x) = log p(x|y) + log P(y).

Let p(x|y) ∼ N(µy , Σy ).

fy (x) = −1

2
(x− µy )

′Σ−1
y (x− µy )−

d

2
log 2π − 1

2
log |Σy |+ log P(y)



Case 1: Independent Features

fy (x) = −1

2
(x− µy )

′Σ−1
y (x− µy )−

d

2
log 2π − 1

2
log |Σy |+ log P(y)

Consider the simple case Σy = σ21 for all y ∈ Y:

• Features are statistically independent and have the same variance.

• Equal sized hyperspherical clusters centered around the µy .

⇒ Determinant |Σ| = σ2d , inverse Σ−1 = (1/σ2)1

Obtain linear discriminant function:

fy (x) = − 1

2σ2
‖x− µy‖

2 + log P(y)

= − 1

2σ2
[x′x− 2µ′

yx + µ′
yµy ] + log P(y)

=
1

σ2
µ′

y| {z }
=:wy

x +
“
− 1

2σ2
µ′

yµy + log P(y)| {z }
=:by

”

= w′
yx + by



Case 2: Identical Covariance Matrices

fy (x) = −1

2
(x− µy )

′Σ−1
y (x− µy )−

d

2
log 2π − 1

2
log |Σy |+ log P(y)

Consider the simple case Σy = Σ for all y ∈ Y:

• Hyperellipsoidal clusters of equal size and shape, centered around the µy .

⇒ Again, |Σ| and (d/2) log 2π can be ignored.

Obtain linear discriminant function:

fy (x) = −1

2
(x− µy )

′Σ−1(x− µy ) + log P(y)

= −1

2
[x′Σ−1x− 2µ′

yΣ
−1x + µ′

yΣ
−1µy ] + log P(y)

= Σ−1µ′
y| {z }

=:wy

x +
“
−1

2
µ′

yΣ
−1µy + log P(y)| {z }

=:by

”

= w′
yx + by



Resulting Decision Rule

fy (x) = w′
yx + by , ∀y ∈ Y

Compute the resulting decision as follows.

• Multi-class case, Y = {1, 2, 3, . . . , k}:

ŷ = f (x) = argmaxy∈Y fy (x)

• Binary case, Y = {+1,−1}, decide +1 if

f+1(x) > f−1(x)

w′
+1x + b+1 > w′

−1x + b−1

w′
+1x + b+1 − w′

−1x− b−1 > 0

(w+1 − w−1| {z }
=:w

)′x + (b+1 − b−1| {z }
=:b

) > 0

w′x + b > 0,

and −1 otherwise.



Linear Discriminant Functions

Left: Posterior class distribution. Right: Decision boundary.



Parameter Estimation



Parameter Estimation

Recall: p(x, y) = p(x|y)P(y).

Bayes’ decision rule only applicable when P(y) and class-conditional densities
p(x|y) are known.

In general, P(y) and p(x|y) are unknown in practical applications!

Instead, we are given a set of (training) samples D drawn independent and
identically distributed (iid) from p(x, y).

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

Task: Use this sample to estimate P(y) and p(x|y)!



Estimating the Prior

Given: iid training sample of size n,

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

Task: Estimate prior P(y). Solve by simply counting:

• How many times have we seen label y in the training set?

• Normalize to obtain probabilities!

P̂(y) =

Pn
i=1 1[yi =y ]

n
, ∀y ∈ Y

The larger the sample size n, the better will be the estimate P̂(y).



Estimating the Class-conditional Densities

Given: iid training sample of size n,

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

Task: Estimate class-conditional p(x|y).

Difficult for several reasons:

• X is usually high-dimensional, often #dimensions � n

• ⇒ density estimation will be poor in sparse regions

⇒ We need assumptions!

• E.g., density to be estimated is Gaussian with unknown µ and Σ

• Instead of inferring an unknown function p(x|y) now only parameters need
to be estimated!

• ⇒ Maximum likelihood!



Maximum Likelihood

Given: class-conditional density p(x|y ; θy ) in parametric form, iid sample D
Task: Find parameters θy such that the likelihood of the data is maximized

Assume further that the θy are functionally independent
⇒ Deal with each class separately and simplify notation

For each class y let Dy = {x : (x, ȳ) ∈ D, y = ȳ} such that

Dy = {x1, x2, . . . , xm}

Since D (and hence also Dy ) are drawn iid, we have

p(Dy |θy ) =
mY

i=1

p(xi |θy )



Maximum Likelihood

Maximize the likelihood p(D|θ) =
Qm

i=1 p(xi |θ) by finding parameters
θ = (θ1, . . . , θq)

′ that agree with the data.

Log-likelihood:

log L(θ) = log p(Dy |θ) =
mX

i=1

log p(xi |θ)

Compute partial derivatives

∂ log L

∂θ1
,
∂ log L

∂θ2
, . . . ,

∂ log L

∂θq
,

and find optimal θ∗ by solving

∂ log L

∂θ1

!
= 0,

∂ log L

∂θ2

!
= 0, . . . ,

∂ log L

∂θq

!
= 0.



ML Example: Multivariate Normal

Example:

log p(xi |µ, Σ) = −1

2
log{(2π)d |Σ|} − 1

2
(xi − µ)′Σ−1(xi − µ)

Differentiate wrt µ:

∂ log p(xi |µ, Σ)

∂µ
= Σ−1(xi − µ)

⇒ The optimal µ̂ must satisfy

mX
i=1

Σ−1(xi − µ̂) = 0

Multiplying with Σ and re-arranging the terms leads to

µ̂ =
1

m

mX
i=1

xi
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