Combining bottom-up + top-down image segmentation

Nils

Machine Learning & Robotics Group - TU Berlin

June 02, 2010

Outline

Introduction

Bottom-Up Segmentation

Top-Down Segmentation

Combining BU and TD

Recap: Image Classification, Object Detection, Image Segmentation

classification:

$$f(I): \mathbb{R}^N \to \{0,1\}^C$$

detection:

$$f(I): \mathbb{R}^N \to \mathbb{N}^n \times \mathbb{R}^{n \times 4}$$

segmentation:

$$f(I): \mathbb{R}^N \to \mathbb{N}^N$$

Bottom-Up & Top-Down Segmentation

Bottom-Up & Top-Down Segmentation

Bottom-Up approach

Rely on continuity or region-based principles, e.g.:

- homogeneity of color
- intensity
- texture
- smoothness
- continuity of bounding contours
- combinations of the above

(a) original

(b) super-pixels

Bottom-Up & Top-Down Segmentation

Top-down approach

Exploit class-specific information such as deformable templates, e.g. part-based models:

- variability of shapes
- appearance
- optimally fit contents of image
- delineate figure boundaries

(c) parts

(d) applied to image

Idea: Can you blend it?

Bottom-Up Segmentation^{1 2}

image graph

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

$$\mathcal{V}_L = \{1, 2, \dots, N\}$$

$$\mathcal{V}_G = \{g\}$$

$$\mathcal{V} = \mathcal{V}_L \cup \mathcal{V}_G$$

$$\mathcal{E} = \mathcal{E}_L \cup \mathcal{E}_G$$

random variables (RV)

$$\mathcal{X} = \{X_i\}, \ i \in \mathcal{V}$$

discrete labels of RV

$$\mathcal{L} = \{l_1, l_2, \dots, l_M\}$$

²Gonfaus '10, Harmony Potentials for Joint Classification and Segmentation

¹Plath et al. '09, Multi-class image segmentation . . .

▶ optimal labeling \vec{x}^* by inferring Maximum A Posteriori (MAP) or, equivalently, minimize global energy function³:

$$\vec{x}^* = \underset{\vec{x}}{\operatorname{argmin}} E(\vec{x})$$

³cf. Hammersley-Clifford theorem

▶ optimal labeling \vec{x}^* by inferring Maximum A Posteriori (MAP) or, equivalently, minimize global energy function³:

$$\vec{x}^* = \underset{\vec{x}}{\operatorname{argmin}} E(\vec{x})$$

energy function of graph ${\cal G}$

$$E(\vec{x}) = \sum_{i \in \mathcal{V}} \phi_L(x_i) + \sum_{(i,j) \in \mathcal{E}_L} \psi_L(x_i, x_j) + \sum_{(i,g) \in \mathcal{E}_G} \psi_G(x_i, \vec{x}_g)$$

³cf. Hammersley-Clifford theorem

▶ optimal labeling \vec{x}^* by inferring Maximum A Posteriori (MAP) or, equivalently, minimize global energy function³:

$$\vec{x}^* = \underset{\vec{x}}{\operatorname{argmin}} E(\vec{x})$$

energy function of graph ${\cal G}$

$$E(\vec{x}) = \sum_{i \in \mathcal{V}} \phi_L(x_i) + \sum_{(i,j) \in \mathcal{E}_L} \psi_L(x_i, x_j) + \sum_{(i,g) \in \mathcal{E}_G} \psi_G(x_i, \vec{x}_g)$$

local unary potential

$$\phi_L(x_i) = -k \log P(x_i|O_i)$$

³cf. Hammersley-Clifford theorem

▶ optimal labeling \vec{x}^* by inferring Maximum A Posteriori (MAP) or, equivalently, minimize global energy function³:

$$\vec{x}^* = \underset{\vec{x}}{\operatorname{argmin}} E(\vec{x})$$

energy function of graph ${\cal G}$

$$E(\vec{x}) = \sum_{i \in \mathcal{V}} \phi_L(x_i) + \sum_{(i,j) \in \mathcal{E}_L} \psi_L(x_i, x_j) + \sum_{(i,g) \in \mathcal{E}_G} \psi_G(x_i, \vec{x}_g)$$

local unary potential

$$\phi_L(x_i) = -k \log P(x_i|O_i)$$

local potential

$$\psi_L(x_i, x_j) = k' I[x_i \neq x_j]$$

³cf. Hammersley-Clifford theorem

▶ optimal labeling \vec{x}^* by inferring Maximum A Posteriori (MAP) or, equivalently, minimize global energy function³:

$$\vec{x}^* = \underset{\vec{x}}{\operatorname{argmin}} E(\vec{x})$$

energy function of graph ${\cal G}$

$$E(\vec{x}) = \sum_{i \in \mathcal{V}} \phi_L(x_i) + \sum_{(i,j) \in \mathcal{E}_L} \psi_L(x_i, x_j) + \sum_{(i,g) \in \mathcal{E}_G} \psi_G(x_i, \vec{x}_g)$$

local unary potential

$$\phi_L(x_i) = -k \log P(x_i|O_i)$$

local potential

$$\psi_L(x_i, x_j) = k' I[x_i \neq x_j]$$

³cf. Hammersley-Clifford theorem

global potential

$$\psi_G(x_i, x_g) = \tilde{k} I[x_i \notin \vec{x}_g]$$

▶ optimal labeling \vec{x}^* by inferring Maximum A Posteriori (MAP) or, equivalently, minimize global energy function³:

$$\vec{x}^* = \underset{\vec{x}}{\operatorname{argmin}} E(\vec{x})$$

energy function of graph $\mathcal G$

$$E(\vec{x}) = \sum_{i \in \mathcal{V}} \phi_L(x_i) + \sum_{(i,j) \in \mathcal{E}_L} \psi_L(x_i, x_j) + \sum_{(i,g) \in \mathcal{E}_G} \psi_G(x_i, \vec{x}_g)$$

local unary potential

$$\phi_L(x_i) = -k \log P(x_i|O_i)$$

local potential

$$\psi_L(x_i, x_j) = k' I[x_i \neq x_j]$$

global unary potential

$$\phi_G(\vec{x}_g) = -\hat{k}\log P(\vec{x}_g|O_g)$$

global potential

$$\psi_G(x_i, x_g) = \tilde{k} I[x_i \notin \vec{x}_g]$$

³cf. Hammersley-Clifford theorem

- ► SVM for
 - $ightharpoonup \phi_L(x_i)$
 - $ightharpoonup \phi_G(x_g)$
- inference:
 - message passing
 - graph cut

- class occurances
- patch/super-pixel confidence
- detect object/non-object areas

- class occurances
- patch/super-pixel confidence
- detect object/non-object areas
- ► CANNOT detect instances
 - ⇒ top-down segmentation

Top-Down Segmentation Outline

- adaptation of sparse TD algorithm to deal with patches⁴
- construct TD from BU
- for each patch:
 - 1. feature vector (color, shape, etc.)
 - 2. occupied part of groundtruth
 - 3. offset to center of gravity of groundtruth

⁴Leibe '08, Robust Object Detection with Interleaved Categorization and Segmentation

Training

► for each positive training patch, save offset to groundtruth center

Training

- cluster training patch based on their feature vectors (visual codebook)
- ► repeat for every object class

Object hypotheses – quantization step

Object hypotheses – spatial voting

Object hypotheses - find maximum

Object hypotheses – done

Combining BU and TD

- 1. run BU:
 - 1.1 determine classes
 - 1.2 determine labels of pixel (-regions)

- 1. run BU:
 - 1.1 determine classes
 - 1.2 determine labels of pixel (-regions)
- 2. for each foreground patch from BU:
 - 2.1 select NN from visual codebook
 - 2.2 project center offsets of matched codeword
 - 2.3 separately, project groundtruth patch of codeword

- 1. run BU:
 - 1.1 determine classes
 - 1.2 determine labels of pixel (-regions)
- 2. for each foreground patch from BU:
 - 2.1 select NN from visual codebook
 - 2.2 project center offsets of matched codeword
 - 2.3 separately, project groundtruth patch of codeword
- 3. run spatial voting scheme (Hough vote)
- 4. save maxima in voting step as object hypotheses

- 1. run BU:
 - 1.1 determine classes
 - 1.2 determine labels of pixel (-regions)
- 2. for each foreground patch from BU:
 - 2.1 select NN from visual codebook
 - 2.2 project center offsets of matched codeword
 - 2.3 separately, project groundtruth patch of codeword
- 3. run spatial voting scheme (Hough vote)
- 4. save maxima in voting step as object hypotheses
- 5. determine agreement of TD and BU (TBD)

Ça y est! Questions and/or comments?