A Machine Learning Approach to Hand-Eye Calibration

Nils, Nikolay, and Marc

Machine Learning & Robotics Group - TU Berlin

February 03, 2010

Outline

Introduction

Stand-alone Calibration: Robot Arm

Stand-alone Calibration: Camera

Hand-Eye Calibration

Calibration Setup Data Acquisition And Structure Minimization Problem

Next steps

Conclusions

Introduction

3 / 20

Introduction

- pre-step to high level algorithms, e.g. object recognition or grasping
- calibrate each piece of hardware by itself
- after calibration measure relative offset between arm and camera (tricky)
- non-linearities, e.g. through distortions
- our idea: reformulation of these problems as a single problem
- simultaneously learn:
 - mapping from image coordinates to world coordinates
 - mapping from state vector q to world coordinates
- minimize error between both mappings

Stand-alone Calibration: Robot Arm

Forward Kinematics

- *n*-dof robot arm:
 - controlled via state vector $ec{q} \in \mathbb{R}^n$, e.g. joint angles
 - ▶ foward kinematics: given \vec{q} determine world coord. \vec{X} of end-effector
 - ideal world: $\vec{X} = \omega(\vec{q})$, actual world: $\vec{X}_{\delta} = \omega(\vec{q} + \vec{\delta})$
 - unknown $ec{\delta}$ due to physical phenomena, e.g. cog wheels

Pinhole Camera Model

• projection matrix $P \in \mathbb{R}^{3 \times 4}$:

$$P = KR[I| - \tilde{C}] \tag{1}$$

► projection of world point $\vec{X} = (x, y, z, v)^t$ to image point $\vec{x} = (u, v, w)$:

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = P \cdot \begin{pmatrix} x \\ y \\ z \\ v \end{pmatrix}$$
(2)

▶ intrinsics $K \in \mathbb{R}^{3 \times 3}$, extrinsics $R \in \mathbb{R}^{3 \times 3}$, $-\tilde{C} \in \mathbb{R}^3$:

$$K = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

Gold Standard algorithm¹ to determine int./ext. parameters

- solvable through Direct Linear Transform(ation) (DLT)
- ▶ given: collect $n \ge 6$ point correspondances: $\vec{x}_i \leftrightarrow \vec{X}_i$
- wanted: matrix P, so that

$$\vec{x}_i = P\vec{X}_i \quad \Leftrightarrow \vec{x}_i \times (P\vec{X}_i) = \vec{0} \quad \Leftrightarrow \vec{x}_i \times \begin{pmatrix} P^1\vec{X}_i \\ P^2\vec{X}_i \\ P^3\vec{X}_i \end{pmatrix} = \vec{0} \quad (3)$$

▶ rewrite eq. (3) in matrix notation, $A \in \mathbb{R}^{12 \times 12}$, $p \in \mathbb{R}^{12}$:

$$A\vec{p} = \vec{0}, \text{ s.t. } \|\vec{p}\| = 1$$
 (4)

- solve with SVD: $A = UDV^T$
- p = V(:,end), if diagonal values of D in descending order

¹Zissermann, Multiple View Geometry

Optical Aberration/Distortion

• camera with lens \neq pin-hole camera model (!)

- distortion (radial, tangential, ...)
- significance increases while focal length (and price) decreases

(a) lens distortion

(b) types of (radial) distortion

Optical Aberration/Distortion

correction of radial distortion

$$\begin{array}{rcl} x' & = & x(1+k_1r^2+k_2r^4+k_3r^6) \\ y' & = & y(1+k_1r^2+k_2r^4+k_3r^6) \end{array}$$

correction of tangential distortion

$$\begin{array}{rcl} x' &=& x + [2p_1y + p_2(r^2 + 2x^2)] \\ y' &=& y + [p_1(r^2 + 2y^2) + 2p_2x] \end{array}$$

 minimizing geometric error of a calibration object (chessboard) based on deviation from linear mappings

Stereo Calibration

first, single-camera calibration to obtain

$$P_l = K_l R_l [I| - \tilde{C}_l]$$

and

$$P_r = K_r R_r [I| - \tilde{C}_r]$$

then, translation matrix R and translation T from right to left camera coordinate system:

$$R = R_r (R_l)^T$$
$$T = \tilde{C}_r - R \tilde{C}_l$$

10 / 20

(5)

Calibration Pipeline

. . .

General Setup

- unknown calibrations parameters: initially, hardware is uncalibrated!
- unknown rotation & translation between robot and camera
- fiducal marker ("lolly pop") in robot's hand
- visually track lolly pop and record image coordinates \vec{x}_i^l and \vec{x}_i^r
- record state vector \vec{q}_i of robot

Data Acquisition

Minimization Problem

- given: set of image points \vec{x}_i^l , \vec{x}_i^r , and state vectors \vec{q}_i
- wanted: world coordinates \vec{X}_i from non-linear mappings, such that

$$\Phi(\vec{x}_i^l, \vec{x}_i^r) = \vec{X}_i = \psi(\vec{q}_i)$$
(6)

Minimization Problem

global cost function:

$$L_{\text{global}} = \sum_{i} |\psi(\vec{q}_i) - \Phi(\vec{x}_i^l, \vec{x}_i^r)|^2$$
(7)

- hard to minimize eq. (7) directly
- Iocal cost function for image points:

$$L_{\vec{x}} = \sum_{i} |X_{i} - \Phi(\vec{x}_{i}^{l}, \vec{x}_{i}^{r})|^{2}$$
(8)

Iocal cost function for state vector:

$$L_{\vec{q}} = \sum_{i} |X_i - \psi(\vec{q}_i)|^2$$
(9)

15 / 20

Suggested Algorithm

Input: image point pairs $(\vec{x}_i^l, \vec{x}_i^r)$, state vectors \vec{q}_i **Output:** mappings $\psi(\vec{q}_i)$ and $\Phi(\vec{x}_i^l, \vec{x}_i^r)$

- 1: define $\psi'(\cdot)$ as regular forward kinematics
- 2: repeat
- 3: learn $\Phi'(\cdot)$ given $\psi'(\vec{q}_i)$ (eq. (8))
- 4: learn $\psi'(\cdot)$ given $\Phi'(\vec{x}_i^l, \vec{x}_i^r)$ (eq. (9))
- 5: **until** $L_{global} < \varepsilon$
- 6: return $\Phi = \Phi'$, $\psi = \psi'$

Learning Step

- SVM regression
- Gaussian Process
- Multi-layer Perceptron
- [your algorithm]
- ► ...

Next steps

- Proof of concept in simulator
- Verification with actual camera and arm
- make data available to IDA members

▶ ...

Conclusions

- iterative approach to the Hand-Eye calibration problem
- solving problem in "EM-fashion"
- no assumption on parameters
- no need to measure exact camera-to-robot offset
- interesting for people with algorithm but no data/problem

10q! Questions?

