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Electroencephalographic recordings are analyzed in an 

event-related fashion when we want to gain insights into 
the relation of the electroencephalogram (EEG) and 
experimental events. The standard analysis method is to 
focus on event-related potentials (ERPs) by averaging. 
However, another approach is to concentrate on event-
related oscillations (EROs). This chapter will introduce 
the notion of EEG oscillations and a method suited to 
analyze the temporal and spatial characteristics of EROs 
at the same time, namely the wavelet analysis. At first 
an introduction to oscillatory EEG activity will be 
given, followed by details of the wavelet analysis. Some 
general prerequisites of recording EROs will be reviewed 
and finally, recently introduced wavelet-based methods 
for studying dynamical interrelations between brain 
signals will be discussed. 

1. OSCILLATIONS IN THE EEG 

Both EEG and ERP measures can be investigated in the 
frequency domain, and it has been convincingly 
demonstrated that assessing specific frequencies can 
often yield insights into the functional cognitive 
correlations of these signals (Başar et al., 1999).  

 
Oscillations were the very beginning of EEG research 

when the German neurophysiologist Berger (1929) first 
observed the dominant oscillations of approximately 10 Hz 
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recorded from the human scalp. Berger coined the term 
alpha frequency for activity in this frequency range by 
using the first letter of the Greek alphabet. Berger 
dubbed the second type of rhythmic activity that he found 
in the human EEG as beta, which is now considered to be 
the frequency range of approximately 12-30 Hz. Following 
this consecutive ordering, Adrian (1942) referred to 
oscillations around 40 Hz (more general 30-80 Hz) 
observed after odor stimulation in the hedgehog as gamma 
waves. The slow oscillations below 4 Hz, which were 
discovered next, had been coined as delta waves. Finally, 
waves that cycle between 4 and 8 times per second (4-8 
Hz) were named theta oscillations after the first letter 
of their assumed region of origin, the thalamus. 

 
Frequency: Name: 

0-4 Hz Delta 
4-8 Hz Theta 
8-12 Hz Alpha 
12-30 Hz Beta 
30-80 Hz Gamma 

Table 1. A list of well-established frequency bands and their names. 

 

1.1 Evoked versus induced oscillations 

Oscillations are characterized by their amplitude and 
phase. The amplitude of an EEG oscillation is typically 
between 0 and 10 µV. The (cyclic) phase ranges between 0 
and 2π. At every point in time the amplitude and phase of 
an oscillation can be determined. According to a 
classification of different types of oscillatory activity 
by Galambos (1992), there are spontaneous, induced, and 
evoked rhythms, all of which are differentiated by their 
degree of phase-locking to the stimulus (emitted rhythms 
in response to omitted stimuli also have been observed, 
but these will not be considered here). In this 
framework, spontaneous activity is completely 
uncorrelated with the occurrence of an experimental 
condition. Induced activity is correlated with 
experimental conditions but is not strictly phase-locked 
to its onset. Evoked activity is strictly phase-locked to 
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the onset of an experimental condition across trials, 
i.e. it has the same phase in every stimulus repetition.  

 

Figure 1. If oscillations occur at the same latency after stimulus 
onset and with the same phase relative to stimulus onset in multiple 
trials (rows 1-4), they are considered evoked by the stimulus 
(left). If latency or phase jitter relative to stimulus onset, the 
oscillations are considered to be induced by the stimulus (right). 
Evoked activity sums up in the average (bottom row), while induced 
activity is nearly cancelled out. 

Figure 1 (left) illustrates such evoked oscillations 
which start at the same time after stimulation in every 
trial and have identical phases. In this case, the 
activity is called evoked, sums, and is visible in the 
averaged ERP. However, evoked oscillations are only 
visible in the ERP to the bear eye if they are of 
sufficient amplitude. But, since high frequency 
oscillations usually have lower amplitude than low-
frequency oscillations they are often not visible. Evoked 
oscillations usually result from any kind of sensory 
events, like auditory, visual or somatosensory 
stimulation. 

If oscillations occur after each stimulation but with 
varying onset times and/or phase jitter, they are 
considered as being induced by the stimulus rather than 
evoked and are not visible in the averaged ERP. Figure 1 

avg
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(right) illustrates this outcome. Special methods have to 
be applied to analyze this type of activity (see below).  
 

 

1.2 Delta and theta oscillations 

An ERP constitutes a mixture of multiple waves of 
various frequencies. Using digital filters single 
frequencies can be selectively shown while all others are 
filtered out. E.g. a band-pass filter lets only certain 
frequencies pass. When only theta frequencies are 
admitted (4-8 Hz) only such slow oscillations will remain 
in the event-related signal. This is illustrated in Fig. 
2. Evoked delta and theta oscillations represent the slow 
potentials in ERPs, i.e. P300, N400, P600 etc. (Basar-
Eroglu et al., 1992). Functional correlates of event-
related theta oscillations are described for working 
memory functions (Tesche & Karhu, 2000; Jensen & Tesche, 
2002). Event-related theta oscillations which relate to 
memory performance have been shown to interact with 
faster oscillations in the gamma frequency range (Fell et 
al., 2003). Note that these event-related signals are not 
identical to those which can be seen with the bare eye by 
physicians in raw EEG and usually relate to deep sleep 
(Steriade et al., 1993) or malfunctions (Gloor et al., 
1977). 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: EROs in the theta band resulting from applying a 4-8 Hz 

band-pass filter to an ERP. An event-related theta oscillation 
emerges after stimulation which then decays over time. 
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1.3 Alpha oscillations  

The term alpha oscillation usually refers to the ongoing 
alpha rhythm. This rhythm with approximately 10 Hz can be 
observed in routine EEG recordings without averaging (cf. 
Fig. 3). Typically, the amplitude of the 10 Hz rhythm 
increases and decreases over time which has been 
described as waxing and waning. Some authors even 
hypothesized that there exist several independent rhythms 
in the alpha band with different functional properties 
(e.g. Niedermeyer, 1997). However, this is not the type 
of alpha activity which we want to discuss here. We are 
interested in 10 Hz oscillations which occur in relation 
to an experimental condition, i.e. evoked or induced 10 
Hz oscillations. 

 

Figure 3. Ten seconds of unfiltered, spontaneous EEG showing alpha 
activity (8-12Hz). 

Fig. 4 shows a burst of 10 Hz oscillations after visual 
stimulation in an occipital electrode (Oz in the 10-20 
system). In order to compute this evoked 10 Hz activity, 
at first an ERP was averaged which was then bandpass-
filetered in the alpha frequency range. Note that the 
burst of oscillatory activity seems to start before the 
onset of stimulation. This is an artefact of the filter 
algorithm. The filter uses time points of the past and 
future to compute each time point of the filtered signal. 
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Therefore, the activity ‘leaks’ into past and future 
events around its real peak. 
 

 
Figure 4. Short burst of 10 Hz oscillations evoked by visual 
stimulation. 

Such bursts of alpha activity are evoked by mostly any 
sensory stimulation, i.e. visual, auditory, and 
somatosensory. The topography of this evoked alpha 
response is restricted to the primary sensory cortex 
which was stimulated. Interestingly, this burst of alpha 
activity is not due to an increase in amplitude. This 
becomes clear when the total power of alpha activity 
following a visual stimulus is computed. The total power 
contains both evoked and induced activity and typically 
decreases after visual stimulation. Thus, the amplitude 
of alpha oscillations is reduced after stimulation while 
the evoked alpha activity is enhanced. This phenomenon 
has been called the alpha paradox (Klimesch et al., 
1998b) and is depicted schematically in Fig. 5. The first 
two traces show band-pass filtered alpha activity and its 
amplitude reduction after a visual stimulus. When these 
traces are simply added up as in the case of an average 
(third row) only those oscillations which are phase-
locked (evoked) will remain visible. Due to a so-called 
phase-resetting the randomly distributed phase will be 
reset to start from the same value after stimulation for 
a short period of time (Brandt, 1997). This leads to the 
short burst of evoked alpha activity, since oscillations 
add up if they have identical phases across trials. 
However, the behavior of the amplitude is only reflected 
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in the total power measure (bottom row) which is 
independent of the phase of the oscillations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. A resetting of the phase of alpha oscilations at the 

time of stimulation leads to a short increase of evoked activity 
(sum) despite the fact that the amplitude (power) decreases. 

 
Alpha activity has been associated with a large number 

of cognitive processes. The most important of them are 
memory processes (Klimesch 1997; Klimesch et al, 1993), 
attention (Klimesch et al., 1998a; Yordanova et al., 
2001) and visual awareness (Sewards & Sewards, 1999; 
Strüber & Herrmann, 2002). For an overview see Basar et 
al. (1997). While the generators of EEG alpha activity 
are aasumed to reside in cortex, these generators are 
probably driven by thalamic cells (Steriade et al., 1990; 
Lopes Da Silva, 1991). 

 

1.4 Beta oscillations 

 
The frequency range from 12-30 Hz constitutes the beta 

frequency band. These oscillations have been investigated 
in the context of motor actions. Beta oscillations are 
suppressed during motor action but increase (a so-called 
rebound) approximately one second after movement with a 
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topography close to the primary sensorimotor regions 
which represent the involved body part (Neuper & 
Pfurtscheller,2001). They are also observed during 
imagined movements  and can be elicited by median nerve 
stimulation (Salmelin & Hari,1994). During somatosensory 
stimulation beta activity is evoked together with gamma 
and alpha activity (Chen & Herrmann, 2001). It has been 
assumed that beta oscillations are induced by faster 
gamma oscillations (Haenschel et al., 2000) and maybe 
they in turn induce slower alpha oscillations which would 
explain the presence of all three frequencies in one 
experimental paradigm. In addition to motor and sensory 
processes beta oscillations also have been associated 
with cognitive processes like memory rehearsal (Tallon-
Baudry et al., 2001).  

 

1.5 Gamma oscillations 

In recent years technical improvements have revealed 
oscillations of ever higher frequencies which are evoked 
by sensory stimulation. These go up to about 600 Hz 
(Curio, 1999) where the theoretical limit of EEG activity 
is assumed due to the temporal width of single action 
potentials in the brain which range between 1 and 2 ms. 
Among high-frequency oscillations gamma waves (30-80 Hz, 
cf. Fig. 6)  have received a considerable amount of 
attention due to their important correlates with higher 
brain functions (Engel et al., 2001). It has even been 
assumed that they might be a neural correlate of 
consciousness (Llinas & Ribary, 1993). 

 
Figure 6. Evoked 40 Hz oscillations show a burt shortly after visual 
stimulation. 
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The correlates of processes that are most frequently 
associated with gamma oscillations are binding phenomena 
(Müller et al., 1997; Tallon et al., 1995; Tallon-Baudry 
et al., 1996), perceiving meaningful objects (Keil et 
al., 1999; Tallon-Baudry et al., 1997), and attention 
(Tiitinen et al., 1993; Müller et al., 1998; Herrmann et 
al., 1999; Herrmann & Mecklinger, 2001; Debener et al., 
2003). 

Reviews related to the functional relevance of gamma 
oscillations can be found in Başar-Eroglu et al. (1996b), 
Tallon-Baudry & Bertrand (1999), Müller et al. (2000) and 
Herrmann & Knight (2001). 

2. WAVELET ANALYSIS 

2.1 FREQUENCY ANALYSIS METHODS  

In principle, every signal can be decomposed into 
sinusoidal oscillations of different frequencies. Such 
decomposition is usually computed using the Fourier 
transform to quantify the oscillations that constitute 
the signal (Dumermuth, 1977). 

Several methods exist to exclusively extract 
oscillations of a specific frequency from ERP data. Among 
the most popular are filtering, Fourier transformation, 
and wavelet analysis.  

Fig. 7 shows the results of those three methods to 
extract frequency information from an ERP. Left panel: 
filtering two ERPs with a band pass filter (35-45 Hz) 
shows a clear burst of 40 Hz activity around 100 
milliseconds. This oscillatory activity is enhanced for 
the dotted as compared to the solid condition. Middle 
panel: Fourier spectrum analyses of the two ERPs. An 
increase of activity for the dotted condition can be 
noticed around 40 Hz. However, it is unclear at what 
point in time this difference between conditions occurs. 
Right panel: the absolute values of the wavelet 
coefficients of the ERP are shown for a 40 Hz wavelet. 
The difference between conditions is very prominent and 
can be observed at every point in time due to the lack of 
oscillations in the signal. The wavelet transform can be 
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thought of as the envelope of the bandpass-filtered ERP. 
The wavelet transform is advantageous over the FFT, since 
the time course of frequency information can be observed. 
While this is also true for the filtered signal, the 
wavelet transform yields directly the amplitude and the 
phase of the signal oscillations in the analyzed 
frequency band when a complex wavelet function is used. 
The wavelet amplitude has only positive values and does 
not bear the problem that oscillations might cancel out 
when averaging across multiple subjects (negative values 
shown in Fig. 7 result from a baseline correction making 
the wavelet transform a relative measure with respect to 
the pre-stimulus interval). A review of using wavelets 
for EEG analysis is given by Samar et al. (1999). 

 

Figure 7. Three possibilities to extract frequency information from 
ERP data: two 35-45 Hz filtered ERPs (left), two FFT spectra of the 
ERPs (middle) and the wavelet transforms of the ERPs (right). Note 
that only the filtered signal and the wavelet transform still 
represent changes over time. The FFT spectra show the whole 
frequency range but no temporal information. 
 
 

2.2 THE WAVELET TRANSFORM 

To compute a wavelet transform, the original signal 
time series, x(t), is convolved with a scaled and 
translated version of a mother wavelet function, Ψ(t). 
The convolution leads to a new signal of wavelet 
coefficients, 

( ) ( ) dttx
a
btAabWx ⋅⋅





 −

Ψ⋅= ∫Ψ
Ψ *, , 



   11
 
where Ψ* denotes the complex conjugation of the wavelet 
function, b is the translation parameter, a is the 
wavelet’s scaling parameter, and AΨ denotes a (wavelet-
specific) normalization parameter. The wavelet 
coefficients quantify the similarity between the original 
signal and the wavelet function at a specific scale a and 
target latency b. Hence, the wavelet coefficients depend 
on the choice of the mother wavelet function.  
 The mother wavelet is constructed in such a way that it 
has zero mean and is localized in both time and frequency 
space. This is in contrast to the Fourier transform where 
the harmonic basis functions have a well determined 
frequency but extend over the whole time axis. Due to its 
localization properties the wavelet transform allows to 
follow the time-course of component structures in the 
signal. This feature is of crucial importance when 
analyzing non-stationary signals but has to be paid for 
with a reduced frequency resolution.  

Another important feature of the wavelet transform is 
its zooming property. When the scaling parameter, a, is 
varied from high to low values the wavelet function, 
ψ([t-b]/a), will be compressed. The corresponding wavelet 
transform zooms from coarser (i.e. low-frequency)  to 
finer  (i.e. high-frequency) signal structures. 

 
In the case of Morlet’s  wavelets, also referred to as 

Gabor wavelets, the mother wavelet function is given by 
the formula 

( ) 2/2
0 ttj eet −⋅=Ψ ω , 

where j denotes the imaginary unit, (-1)1/2, and ω0 is 
2π times the frequency of the unshifted and uncompressed 
mother wavelet (if less than 6 cycles of a wavelet are 
used a correction term e-ω0/2 has to be subtracted from 
ejω0t to guarantee that the wavelet still has a mean value 
of zero). Morlet wavelets are complex functions. Both 
their real and imaginary part consist of a harmonic 
oscillation windowed in time by a Gaussian envelope. This 
is schematically illustrated in Fig. 8. 
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Figure 8. Multiplying a sinusoidal function (a) and an envelope function 
(b) results in a wavelet (c).  

 
Using sinusoidal wavelets like the Morlet wavelet is 

ideally suited for detecting sinusoidal EEG activity 
since the wavelet transform is similar to detecting 
whether the used wavelet is contained in the signal. 
Other wavelets which are more spiky can be used for 
detecting transient phenomena in EEG like epileptic 
spikes (Schiff et al., 1994).  
 
In the frequency domain, Morlet wavelets also have a 

Gaussian shape around their modulation frequency, i.e. 
the wavelet scale can be directly interpreted in terms of 
a well-defined center frequency (the terms scale and 
frequency will be used synonymously here). Hence, the 
scaled, unshifted wavelet can be written as a function of 
frequency, f:  

( ) 22 2/2, tttfj eeft σπ −⋅=Ψ , 

where the standard deviation σt of the Gaussian temporal 
envelope is reciprocally related to the frequency 
(σt∼1/f) in order to retain the wavelet’s scaling 
properties. By this scaling one obtaines the same  number 
of significant wavelet cycles, nco=6σtf, at all 
frequencies. The standard deviation in the frequency 
domain is given by σf=(2πσt)-1. It grows proportionally to 
the modulation frequency, i.e. σf/f is constant. This 
implies that the Morlet wavelet transform has a different 
time and frequency resolution at each scale. If the 
number of significant cycles of the wavelet is kept 
constant it varies in temporal width as a function of 
frequency, since the same number of cycles spread over a 
longer time interval for lower frequencies. Therefore, at 
high frequencies the temporal resolution of a wavelet is 
better than at low frequencies. However, the inverse is 
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true for the frequency resolution of the wavelet 
transform. At low frequencies the wide temporal extention 
of the wavelet results in a good frequency resolution, 
since many time points are considered for the analysis. 
At high frequencies, where the small width leaves fewer 
time points, the frequency resolution decreases. This is  
illustrated in Fig. 9. 

Figure 9. Three Morlet wavelets (leftpanel, only real part shown) with 

different central frequencies and the corresponding frequency spectra (right 
panel). A low-frequency wavelet of 10 Hz is very broad in the time domain 

but has a good frequency resolution picking up only activity from adjacent 

frequencies in a wavelet analysis (left peak in frequency spectrum). A 
wavelet with a frequency of 40 Hz is more localized in time but has a lower 

frequency resolution picking up frequencies from a wider range in a wavelet 

analysis (right peak in frequency spectrum). 
 

Besides this general trade-off between temporal and 
frequency resolution wavelets also allow to adjust their 
temporal and frequency width for any given center 
frequency. By using a wavelet with more cycles (i.e. 
larger nco) the frequency resolution increases, since the 
frequency can be determined via more time points – of 
course the temporal resolution decreases at the same 
time. Using fewer cycles has the opposite effect. 

 
Convolutions with Morlet wavelets can be computed for 

multiple frequencies in order to yield a time-frequency 
(TF, cf. Fig. 16) representation of the analyzed signal, 
x(t). Because the Morlet wavelet function is complex, the 
wavelet transform, Wx(t,f),  is also a complex function, 
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which can be divided into its real part, ℜ{Wx}, and its 
imaginary part, ℑ{Wx}. Alternatively, using the polar 
notation, Wx=|Wx|exp{jθx}, the wavelet coefficients can be 
described by an amplitude, |Wx|=[ℜ{Wx}2+[ℑ{Wx}2]1/2, and a 
phase angle, θx(t,f)=tan-1[ℑ{Wx}/ℜ{Wx}].  

A wavelet function can be thought of as a finite 
impulse response filter. In this context, the real part, 
ℜ{Wx}, of the Morlet wavelet transform represents a 
bandpass-filtered signal, xf(t), while the imaginary 
part, ℑ{Wx}, yields  a 90-degree phase shifted signal 
(Hilbert transform). The amplitude, |Wx(t,f)| corresponds 
to the envelope of the filtered signal, xf(t). It 
quantifies the instantaneous oscillatory strength of the 
signal with respect to the analyzed frequency band.  Fig. 
10 shows a time-frequency representation of the signals 
depicted in Figure 1. The TF representation has been 
obtained by gray-scale coding of the wavelet amplitudes. 
Positions on the horizontal axis correspond to different 
latencies, while  different wavelet center frequencies 
have been mapped to the vertical axis. 

 

 

Figure 10. Multiple convolutions can be mapped in a time frequency 
representation. This is shown for the evoked gamma activity (top) of the 
example in Figure 1, the sum of evoked and induced gamma activity (middle) 
and isolated induced gamma activity (bottom). The induced activity has been 
estimated by the difference of total and evoked activity. 

 
In analogy to the Fourier power spetrum,  the wavelet 

power spectrum is defined as |Wx(t,f)|2. It is a measure 
for the signal energy (signal variance) contained in the 
time-frequency bin covered by the transform, centered 
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around time point t and frequency f. The Wavelet 
functions can be normalized prior to the convolution to 
have unit energy at all scales. In this case, the wavelet 
power spectra of an analyzed signal are then directly 
comparable to each other across all scales. For the 
Morlet wavelet transform this normalization is achieved 
with the factor Aψ=σt-1/2π-1/4.  

 
 If, however, the wavelet transform should directly 

yield the amplitude of the analyzed signal, a different 
normalization factor needs to be used. The Morlet wavelet 
transform is very similar to the Gabor transform 
(windowed Fourier transform). The main difference is that 
in the wavelet method the width of the data window is not 
fixed but adapted to the analyzed frequency. In analogy 
to the Gabor transform, the wavelet amplitude spectrum, 
|Wx(t,f)|,  yields the instantaneous amplitude of an 
oscillation when the Gabor normalization factor Aψ is 
used: 

 
Aψ=σt-1(2/π)1/2 

 
To represent phase-locked (evoked) activity in an ERP 

experiment, the wavelet transform is computed on the 
average over the single trials (i.e. on the ERP): 

 

Evoked = ∑∫
=

Ψ ⋅





 −

Ψ
N

i
i dtteeg

Na
btA

1

* )(1
 

Note that absolute value  (or absolute power) is 
calculated. After calculating the evoked activity, the 
frequency-specific baseline activity can be subtracted to 
yield values that indicate oscillatory amplitude (or 
power) relative to baseline.  
 
When wavelet transforms are computed, the convolution 

peaks at the same latency as the respective frequency 
component in the raw data, although the peak width will 
be smeared. Therefore, the baseline should be chosen to 
precede the stimulation by half the width of the wavelet 
(e.g. 75 milliseconds for six 25 millisecond cycles of a 
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40 Hz wavelet) to avoid the temporal smearing of post-
stimulus activity into the baseline. To avoid distortions 
by the rectangular window function that can result from 
'cutting out' a single epoch from continuous raw data 
(edge effects), the convolution should start and end one 
half of the wavelet length before the baseline and after 
the end of the assessed time interval, respectively. 

 
The TF representation of the ERP contains only that 

part of the activity that is phase-locked to the stimulus 
onset. To compute the activity that is not phase-locked 
to stimulus onset (and is therefore cancelled out in the 
average), the total activity (sum of evoked and induced 
activity) can be computed. To calculate the sum of all 
activity at one frequency, the absolute values of the 
wavelet transforms of the single trials are averaged, 
which means that each single trial is at first 
transformed and the absolute values (or alternatively the 
power values) are averaged subsequently: 

Total = ( )∑ ∫
=

Ψ ⋅





 −

Ψ
N

i
i dtteeg

a
btA

N 1

*1
. 

The corresponding TF representation (sum) contains all 
activity of one frequency that occurred after stimulus 
onset, no matter whether it was phase-locked to the 
stimulus or not (cf. Fig. 10). As above, the activity in 
a pre-stimulus interval  can be subtracted to obtain a 
relative measure.  

3. NECESSARY CONDITIONS FOR RECORDING OSCILLATIONS 

The analysis of EEG frequencies requires some 
precautions when data are recorded. These are discussed 
next. 

 

3.1 HARDWARE REQUIREMENTS 

Two important parameters for the recording equipment 
are critical to properly record oscillatory activity: (1) 
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The sampling rate has to be set to a value that is at 
least twice the highest frequency that should be analyzed 
(four times is better and is required by some software). 
For example, if gamma activity up to 80 Hz shall be 
analyzed, a minimum sampling rate of 160 Hz is needed and 
320 is recommended. (2) The low pass filter needs to be 
set to a value higher than the highest frequency that 
should be analyzed. The low pass filter is usually 
integrated in the analog amplifier to prevent aliasing 
errors when digitizing analog data. This step is 
sometimes overlooked when trying to record high frequency 
oscillations for the first time.  

3.2 ARTIFACT REJECTION 

All artifacts that contaminate traditional ERP averages 
should be excluded from frequency analysis as well. In 
addition, there are several specific artifact conditions 
that are especially crucial when oscillatory activity is 
analyzed. 

 
When analyzing alpha activity subjects should keep 

their eyes open even if they have no visual task to 
perform. When they close their eyes strong alpha 
oscillations will appear in the EEG which show no 
correlation with the cognitive task and contaminate the 
analysis. 

 
A potential confound of human gamma activity is 

electromyography (EMG). If subjects sit uncomfortably or 
chew during an EEG session and innervate their muscles, 
the EEG electrodes will record EMG activity. This high 
frequency muscle-related activity (30-80 Hz) can be 
mistaken for gamma EEG activity. Therefore, all epochs 
that are subsequently averaged should be visually 
evaluated for the presence of such EMG artifacts, which 
should then be excluded from further analysis. 
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Figure 11. Clean EEG data and its frequency spectrum (left) and an epoch 
with EMG contamination leading to frequency peaks around 40 Hz. 

Figure 11 shows ten seconds of clean EEG and the 
corresponding frequency spectrum with a 0 Hz and a 12 Hz 
alpha peak (left). EMG activity can easily be detected in 
the time domain (right) but may be mistaken for gamma 
activity in the spectrum. 

3.3 STIMULUS SIZE 

Exogenous parameters like physical stimulus properties 
are known to influence the amplitude of sensory evoked 
potentials. The same dependence upon exogenous parameters 
can be observed for oscillatory EEG activity. Especially 
for low-amplitude activity in the gamma range it is 
crucial to present stimuli of sufficient size in order to 
evoke reliable responses. Cognitive differences between 
experimental conditions can only be observed when the 
amplitude is sufficiently high. 

 
Fig. 12 shows how the evoked gamma response depends 

upon stimulus size. Large (9° vis. angle) and medium (5° 
vis. angle) stimuli evoked gamma peaks of approx. 0.4 µV 
over occipital cortex which clearly differ from baseline 
activity. Small (1° vis. angle) stimuli, however, evoke 
only weak gamma responses which are only twice the 
amplitude of the baseline noise. The first peak of gamma 
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activity is due to the onset of the visual stimuli and 
the second one due to their offset. 

 
 
 
 
 
 
 
 

 
 
 
 
Figure 12. Evoked gamma responses in response to visual stimuli of 
different size. Large (solid) and medium (dotted) stimuli evoke 
strong gamma peaks while small (dashed) stimuli evoke only weak 
responses. 
 

3.4 STIMULUS DURATION 

Due to the fact that onset as well as offset of a 
stimulus evoke significant gamma bursts the duration of a 
stimulus plays an important role for the observed pattern 
of oscillations. 

Figure 13. Stimuli of three different durations evoke 
approximately the same onset peak of gamma activity around 100 ms 
but different offset peaks. Stimulus durations: 250 ms (solid), 150 
ms (dotted), and 50 ms (dashed). 

 
When stimuli are sufficiently long in duration their 

offset responses can clearly be differentiated from their 
onset peaks. This is illustrated in Fig. 13 for stimuli 
of 250 ms duration (solid) and 150 ms duration (dotted). 
If, however, the duration is very short onset peak and 
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offest peak mix into each other and can not be told apart 
(50 ms duration, dashed). This is also true for ERP 
analysis but often disregarded. When analyzing late ERP 
componets they should not be contaminated by offset 
responses. 
 

3.5 STIMULUS ECCENTRICITY 

Gamma oscillations are mainly generated over sensory 
cortices. In case of the visual cortex the central visual 
field is represented by more neurons than the peripheral 
visual field. This leads to an influence of the 
eccentricity of visual stimuli on the evoked gamma 
response.  

 

 
Figure 14. Influence of eccentricity on the evoked gamma response. 

Centrally presented stimuli (dashed) evoke much larger responses 
than stimuli of identical size and shape which are presented more 
eccentrically (dotted and solid). 

 
Fig. 14 shows the responses to three identical stimuli 

at different eccentricity. A centrally presented stimulus 
(dashed) leads to the largest response. Already at 4 
degrees eccentricity (dotted) the response is much lower. 
At an eccentricity of 8 degrees it is even lower. 
Therefore, it is advantageous if central presentation can 
be applied. 
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3.6 AGE OF SUBJECTS 

 
It has been shown that age influences the amplitude of 

ERPs (Polich, 1997). The same is true for evoked 
oscillations, especially in the gamma frequency range. 
Already at an age of around 45 years the amplitude of the 
response begins to decrease (Böttger et al., 2002). 
Therefore, subjects must be chosen such that they 
represent a homogeneous age. Otherwise age might be a 
confound for cognitive parameters. 

 

3.7 ANALYSIS OF AN ERP 

 
When all technical aspects have been taken care of, 

interesting new findings can be observed in the 
oscillatory EEG responses. As Makeig et al. (2002) have 
nicely demonstrated, an ERP (Fig. 15) and the frequency 
representation of the ERP (Fig. 16) are two alternative 
ways of investigating the EEG in response to experimental 
stimulation.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. An ERP in response to a visual target stimulus exhibiting 
a series of components: P1, N1, P2, N2, and P3. 

 
Fig. 16 shows the alternative representation of the ERP 

in Fig. 15 as a time-freqeuncy plot. The early ERP 
components are visible as high-frequency blobs in the 
gamma and beta range and the later components are visible 
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as two overlapping big blobs in the theta and delta 
range. The earliest frequency component around 36 Hz has 
the shortest duration and terminates around 100 ms after 
stimulation. The subsequent oscillation around 18 Hz is 
already more widely spread across time and lasts 
aproximately until 150 ms after stimulation. The theta 
wave of about 7 Hz remains active until around 350 ms and 
a delta wave (approx. 3 Hz) can be observed up to 700 ms 
post-stimulus. Such a shift from early high-frequency 
components to later low-frequency components is a typical 
finding (Chen & Herrmann, 2001; Haenschel et al, 2000). 
Sometimes they reveal a frequency relation of 4:2:1, 
suggesting underlying neural resonance circuits that 
trigger each other (Herrmann, 2001). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 16. The time-frequency representation of the ERP in Fig. 
15.  
 

4. WAVELET-BASED DYNAMIC INTERDEPENDENCE MEASURES  

 In the neuroscience community there has been growing 
interest not only in the modularization of brain 
functions (i.e. the functional specialization of local 
brain areas) but also in the cooperation between 
specialized and widely distributed areas which is a 
prerequisite of higher cognitive functions and large-
scale integration. This cooperation requires a certain 
degree of dynamic synchronization between the involved 
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neuronal assemblies which in turn should be reflected in 
the EEG as a dynamic interrelation between the measured  
brain signals (von Stein et al., 1999; Schack et al., 
1999). 
Classical interrelation measures such as Fourier-based 

coherence and correlation depend on the stationarity of 
the measured signals, which is rarely fulfilled with 
concurrent brain signals. Recently, alternative tools 
based on wavelet analysis have been developed and 
successfully applied to EEG/MEG signals (e.g. Lachaux et 
al., 2002). They allow to track the time-course of 
coherence in non-stationary neuronal signals with good 
temporal and frequency resolution. 

4.1 Wavelet Coherence 

Analogous to classical coherence, wavelet coherence is 
defined as the cross-wavelet spectrum of two signals x 
and y  normalized by their corresponding auto-spectra: 

( )
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where Wxy(t,f) is the cross-wavelet spectrum (see below) 
at latency t and frequency f, while Wxx and Wyy denote the 
auto-spectra of x and y, respectively. Wavelet coherence 
ranges between 0 and 1. It is a measure of the degree of 
linear relationship between  x and y in a specific time-
frequency bin. The instantaneous cross-wavelet spectrum 
can be estimated from the product of the corresponding 
univariate wavelet coefficients, ( ) ( ) ( )ftWftWftW yxxy ,,, *⋅= . As 
is the case with Fourier cross-spectra, this estimate is 
inconsistent and has to be  smoothed in an appropriate 
way in order to improve reliability.  

 In an event-related potential paradigm, the smoothing 
can be done across trials:  
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where N is the total number of trials and Wk means the 
wavelet coefficient calculated from a signal recorded 
during the kth trial. This method yields a coherence 
measure which is very similar to the event-related 
coherence introduced by Rappelsberger et al. (1994). It 
does not require stationarity across time but is based on 
the (also questionable) assumption of stationarity across 
trials. 

The wavelet coherence method as introduced by Lachaux 
et al.(2002) estimates Wxy by averaging over a time period 
around the  target latency,  

( ) ( ) ( ) τττ
δ

δ

δ

dfWfWftW y

t

t
xyx ,,1, *

2/

2/
∫
+

−

⋅= . 

Using Morlet wavelets, this approach corresponds to the 
WOSA (Welch overlapping segment averaging) estimate of 
the cross-spectrum (Welch, 1967), with the exception that 
in the wavelet-based method the length of the smoothing 
window can be varied in dependence upon the target 
frequency, f. The smoothing window can be chosen to 
contain the same fixed number of cycles, ncy, at all 
frequencies, i.e. δ=ncy/f. Due to the flexible integration 
window the wavelet coherence measure yields a more 
consistent time-frequency resolution than the WOSA 
method.  Moreover, the same statistical performance of 
the coherence estimator can be achieved at all 
frequencies. Bias and variance of the wavelet coherence 
estimator have been shown (Lachaux et al. , 2002) to 
depend only on the number of independent data epochs 
entering into the calculation of coherence. The number of 
independent (non-overlapping)  data segments is given by 
the ratio ncy:nco, where nco denotes the number of 
significant wavelet cycles. In oder to gain statistical 
power, this ratio should be chosen as high as possible. 
However, a large ncy (i.e. a large  integration window) 
diminishes the temporal resolution for measuring  
coherence and decreases the probability of detecting 
short-lasting coherent epochs. Therefore, ncy should be 
adapted to the length of the coherent epochs which are  
searched for, using larger integration windows for longer 
epochs of coherency. On the other hand, as discussed in 
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Sec. 2.2, the parameter nco has influence on the frequency 
resolution of the wavelet transform and thus, on the 
frequency selectivity of the coherence measure, which 
decreases for low values of nco. Hence, nco  must be 
chosen in accordance to the frequency range of interest. 
Typical values proposed by Lachaux et al. (2002) are nco≥3 
for wide frequency bands (more than 10Hz) and values up 
to 8-10 for narrow bands. 

 

4.2  Phase Synchronization 

Coherence does not separate the effects of covariance 
of the amplitude waveforms and of the phases of two 
oscillatory signals. The recently developed concept of 
phase synchronization of chaotic (and/or noisy) systems 
(Rosenblum et al., 1996) is more general. It implies the 
appearance of a certain relationship between the phases 
of oscillatory (sub)systems but does not impose 
restrictions on their irregular amplitudes, which may 
remain non-correlated. This concept is based on the  
well-known fact that weak coupling first affects the 
phases of oscillators, not their amplitudes. Hence, the 
detection of phase synchronization should be sufficient 
in order to reveal an interaction between two weakly 
coupled  (sub)systems.  
With respect to brain signals, phase synchronization  

in certain frequency bands is supposed to be a central 
mechanism in neuronal information processing (Varela et 
al., 2001). There is evidence,  mostly from animal 
experiments, that synchronization of neuronal activity 
within sensory cortex is involved in feature binding 
(Eckhorn et al., 1988; Gray et al., 1989). Transient 
synchronization between physically distant brain areas 
has also been reported (Roelfsema et al., 1997). It was  
revealed as a possible mechanism for large-scale 
integration, establishing a dynamic link between neural 
assemblies by temporarily adjusting their discharge 
frequencies. Recent experimental results from 
intracranial and scalp recordings support the assumption 
that magnitude and phase of brain signals might indeed be 
involved in a different manner during a cognitive process 
(Rodriguez et al., 1999; Bruns et al., 2000). 



   26
 

 
 

4.2.1 Instantaneous Phase Difference 

The parameter for measuring phase synchronization is 
the relative phase angle between two oscillatory systems. 
Neuroelectrical recordings are broad-band signals and 
their phase cannot thoroughly be defined. Formally,  one 
could apply the  analytic signal approach (Gabor, 1946) 
and assign an instantaneous phase and an instantaneous 
amplitude via the Hilbert transform. However, the Hilbert 
phase and Hilbert amplitude have direct physical meaning 
only for band-limited signals. 

The Morlet wavelet transform acts as a bandpass filter 
and, at the same time, yields separate values for the 
instantaneous amplitude a(t,f) and the phase θ(t,f) of a 
time-series signal at a specific frequency f. Thus, the  
wavelet phases of two neuronal signals x and y can be 
utilized to determine their instantaneous phase 
difference in a given frequency band 

( ) ( ) ( )ftftft yx ,,, θθθ −=∆  

and to establish a synchronization measure which 
quantifies the coupling of phases independent from 
amplitude effects. (Note that according to the  above 
equation the phase difference has to be calculated from 
the unfolded univariate phase angles.)  
 

Transient phase entrainment  (phase locking) is 
observed if the phase difference remains approximately 
constant over some time period (typically hundreds of 
milliseconds in the context of neurocogniton). Due to the 
noisy and/or chaotic nature of neuronal signals, their 
relative phase is usually not bounded even when there 
exists some phase coupling between them. For weak noise, 
the phase difference fluctuates around some mean phase 
shift with occasional rapid phase jumps of ±2π. For 
strong and unbound noise (i.e. Gaussian noise), these 
phase slips occur irregularly. That means that phase 
locking can be detected in a statistical sense only (Tass 
et al., 1998; Rosenblum et al., 2001). One has to analyze 
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the distribution of the relative phase angles on the unit 
circle (wrapped to the interval [0,2π]). For independent 
signals, this distribution will be close to uniform, 
while synchrony shows up as the appearance of a 
dominating peak.  
 
Fig. 17 shows the phase difference between the 8 Hz 
oscillations recorded at electrodes O1 and F9 after 
visual stimulation. While the phase difference varies 
over time before stimulation, it remains stable at a 
value of approx. 0.83 π (2.6 rad) after stimulation for 
about 250 ms. This can be seen by the plateau of the 
curves. 
 

Fig 17. Two time courses of 8 Hz event-related oscillations after 
wavelet decomposition for two electrodes (top row). The phase 
differences (bottom row) reveal that after stimulation (at 0 ms) 
there is a stable phase relation between the two electrodes in  both 
trials from 0 to approx. 250 ms. 
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4.2.2 Phase-Locking Statistics 

Different  synchronization measures have been proposed, 
based e.g. on the Shannon entropy, the mutual 
information,  a stroboscopic approach or directional 
statistics; see  e.g. Tass et al. (1998) and Rosenblum et 
al. (2001) for a review. According to directional 
statistics (Mardia & Jupp, 2000), the coherence of an 
angular distribution θi can be quantified by estimating 
the phase-locking index (PLI), 

CVePLI j −=+== 1sincos 22 θθθ , 

where brackets denote the expectation operator and CV is 
the circular variance CV. It is easily confirmed that the 
PLI ranges between zero for uniformly scattered phases 
and one in the case of perfect phase locking.  
 

In a repeated-stimulus design, the PLI can be estimated 
by  averaging over trials (Lachaux et al., 1999): 

( ) ( ){ }∑
=

∆=
N

k

k ftj
N

ftPLI
1

,exp1, θ , 

where N is the total number of trials and ∆θk represents 
the instantaneous phase difference of the two brain 
signals recorded during the kth trial. The bivariate  PLI 
measures the intertrial variability of the frequency-
specific relative phase of two brain signals at a given 
target latency, i.e. it quantifies the stability of a 
linear phase relationship across trials.   
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Figure 18. TF representation of the bivariate intertrial PLI 
estimated from two simultaneous EEG recordings (from an occipital 
(O1) and a frontal scalp electrode (F9)) during visual stimulation 
of a human subject (stimulus onset at time t=0; N=59 trials; nco=6 
significant wavelet cycles).  After stimulus onset, a transient 
period of phase coherence is selectively detected in the alpha band. 
 
Fig. 18 shows the  TF representation of the intertrial 

PLI for two EEG scalp recordings in a visual ERP 
experiment. A prominent epoch of transient phase 
coherence can be detected shortly after stimulus onset. 
The phase locking confines  selectively  to the alpha 
band. 
 
 
Fig. 19 shows how the phase of an oscillation is 

influenced by an experimental stimulus. Before visual 
stimulation the phase differences between the 8 Hz 
oscillations in electrodes O1 and F9 were almost randomly 
distributed (left panel). After a visual stimulus 
occurred most phase differences showed a value of 150 
degrees. This indicates that the stimulus affects the 
phase of the oscillations. 
 

 
Figure 19. The phase distribution of the phase differences of the 

8 Hz oscillations between electrodes O1 and F9. The numbers on the 
circle denote the phase difference in degrees and the extention of a 
wedge indicates how many single trials showed this phase difference. 
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Before visual stimulation the phases were randomly distributed 
(left). In a time interval from 50 to 300 ms after stimulation the 
phases were clustered around a value of about 150 degrees (0.83 π, 
right). 
 

 
The PLI measure offers a good temporal resolution, 

which is limited only by the width of the wavelet 
function applied for the univariate phase estimation. Due 
to the trade-off between temporal and frequency 
resolution of the wavelet transform it might be 
advantageous to prefilter the signals in a narrow 
frequency band around the target frequency prior to 
estimating their wavelet phases (Lachaux et al., 1999). 
This is recommended especially when dealing with high 
target frequencies in the gamma band, where the frequency 
resolution of the wavelet transform is rather poor. 
 
When the PLI is estimated from a finite number of 

samples, as is always the case in real situations, a non-
zero PLI value will be measured even if the samples are 
drawn from a uniform distribution. For N samples, the 
expected PLI value (i.e. the bias) is N-1/2. The Rayleigh 
test (Mardia & Jupp, 2000) can be applied in order to 
assess  significance of the detected phase locking 
against the null hypothesis of a uniform distribution.  

Because the sampling distribution of the statistics is 
usually unknown for brain signals, Lachaux et al. (1999) 
have proposed a Monte Carlo approach based on the 
shuffling of trials. Surrogate values are computed from 
the same signals x and y used for original PLI 
estimation, except that the order of trials for y is 
permuted before calculating the relative phases. That 
means that the instantaneous phase difference is computed 
from signals which have been recorded during different 
trials and can  thus be considered to be uncorrelated. 
For each permutation, the maximum PLI value is measured 
and compared against the original PLI value. The 
percentage  of surrogate values which are greater than 
the original PLI at a given latency is called phase-
locking statistics (PLS) (Lachaux et al., 1999). For PLS 
values which are smaller than a chosen significance level 
the measured synchrony is  considered significant. The 
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number n of permutations needed for PLS calculation 
depends on the chosen significance level p; for a one-
sided test it is given by  n=1/p-1 (Theiler et al., 1992; 
Schreiber & Schmitz, 2000).  
 Although PLS is a powerfull method it has its caveats. 
Note that PLS fails to reject the null hypothesis in the 
important case, when both  univariate signals have 
constant phases across trials and thus, the bivariate  
phases are perfectly locked (Lachaux et al., 1999). 

 
 
However, phase-locking statistics cannot be applied to 

single trials (or averaged signals like ERPs). Moreover,  
it fails to detect periods of synchrony which occur with 
varying phase delay across trials or at jittering 
latencies. As an alternative, Lachaux et al. (2000) 
proposed the single-trial phase-locking index 

( ) ( ){ }∫
+

−

∆=−
2/

2/

,exp1,
δ

δ

ττθ
δ

t

t

dfjftPLIS , 

also referred to as smoothed phase-locking index (S-PLI), 
where averaging of the phase vectors proceeds over 
adjacent time points. Time smoothing diminishes the 
temporal resolution of the S-PLI  measure. As with 
wavelet coherence, the width of the smoothing window 
should be adapted to the target frequency, and to the 
expected length of the coherent epochs. Surrogate data 
for a statistical test can be obtained by data 
scrambling, i.e. by the permutation of the temporal order 
of the samples in each of the two signals. For a review 
of surrogate data methods  see Paluš (1997) and Schreiber 
& Schmitz (2000).  
 

 

5. CONCLUSION 

 
We reviewed the nature of oscillations in human EEG and 

how to analyze them via wavelet analysis. We hope that we 
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were able to convince the reader that oscillations are a 
valuable approach on how to look at electrophysiological 
data in addition to computing event-related potentials. 
Our attempt to name a few of the many experiments 
investigating oscillations in the human EEG was by no 
means complete. However, the list gives a short overview 
of the different frequency bands and may give the 
interested reader a link to further articles. In addition 
to the frequency bands which were explicitely mentioned 
here there are various others ranging from oscillations 
close to 0 Hz up to 600 Hz (Curio, 1999). 

 
We also hope that the reader has learned new ways to 

investigate oscillatory activity in his EEG data. At the 
same time we tried to show the limitations and caveats of 
the introduced methods. Wavelets are not the only way to 
analyze oscillations – but they have some advantages over 
other methods. Especially the possibility to investigate 
the time course of an oscillation and to compute time-
frequency representations with variable resolutions are 
among the strengths of wavelet analysis. Also the 
analysis of phases and their temporal characteristics is 
easy to achieve via wavelet analysis. However, care needs 
to be taken with some of the parameters, like the number 
of cycles which determines the frequency resolution as 
well as the temporal resolution of the analysis. 

 
The interpretation of significant synchronies between 

brain signals that have been detected is not 
straightforward. Especially when dealing with EEG scalp 
recordings, spurious synchronies may arise from volume 
conduction and/or reference effects. Volume conduction 
leads to an artificially high synchrony especially 
between adjacent  electrodes since their recorded 
neuronal populations overlap in space (Srinivasan et al., 
1998). The effect of the choice of a specific reference 
electrode can hardly be predicted without precise 
knowledge of the source locations and of the volume 
conductor (Nunez et al., 1997). It may lead to an 
increase as well as to a decrease of measured synchrony 
between EEG recordings due to adding or removing a common 
signal, respectively. To circumvent these problems the 
spatial resolution of EEG recordings can be enhanced by 
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deblurring techniques (Le & Gevins, 1993), scalp current 
density (SCD) calculation (Pernier et al., 1988; 
Lagerlund et al., 1995) or cortical imaging (Nunez et 
al., 1994) prior to wavelet analysis. However, it was 
argued (Biggins et al., 1991) that SCD estimation could 
also introduce spurious synchronies due to spatial 
interpolation inherent in the mathematical algorithm. A 
challenging approach could be to combine inverse methods 
and TF methods in order to reconstruct the sources of 
oscillatory neuroelectrical activity. 

 
Of course, the approaches which we focused on are not 

the only ones. There are a number of other fruitful 
applications of wavelets in neurophysiology and some of 
them will probably gain more importance in the future.  

 
One approach which is very promising is using a 

discrete wavelet analysis for denoising. An averaged ERP 
may be decomposed into wavelet coefficients by a discrete 
wavelet analysis. Then one can determine which 
coefficients yield significant activity at the 
corresponding frequency. In a second step only these 
significant coefficients are considered and others are 
set to zero. Now the ERP is reconstructed from the 
remaining wavelet coefficients. This procedure results in 
filtering out other frequencies which are considered 
noise for the cognitive task (e.g. Wang et al., 1998; 
Quiroga & Garcia, 2003). 
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